- 1,864
- 34
Homework Statement
\int_{1}^{2}(\frac{2}{2x+1})^3 dx
Homework Equations
Normal integral equations
The Attempt at a Solution
\int_{1}^{2}(\frac{2}{2x+1})^3 dx = 2^3\int_{1}^{2}\frac{1}{(2x+1)^3} dx
u=2x+1
2^3\int_{1}^{2}\frac{1}{u^3} dx = 2^3\int_{1}^{2}u^{-3} dx
Antiderivate of u^{-3} = \frac{u^{-3+1}}{-3+1} = \frac{u^{-2}}{-2}= \frac{1}{-2u^2}
Plotting the real u in: \frac{1}{-2(2x+1)^2}
2^3\int_{1}^{2}\frac{1}{-2(2x+1)^2} = 2^3\left(\frac{1}{-2(2x+1)^2}\right)_1^2 =2^3\left(\frac{1}{-2(2 \cdot 2+1)^2}\right) - 2^3\left(\frac{1}{-2(2 \cdot 1+1)^2}\right) = \left(\frac{2^3}{-50}\right) - \left(\frac{2^3}{-18}\right)
= \left(\frac{72}{-450}\right) - \left(\frac{200}{-450}\right) = \left(\frac{72-200}{-450}\right) = \left(\frac{-128}{-450}\right) = \frac{128}{450} = \frac{64}{225}
This gives about: 0.284444...
When I type this function on the calculator, the area between x=1 and x=2 is 0.1422222...
That is half of my answer, what have I done wrong?
Last edited: