- #1
karush
Gold Member
MHB
- 3,269
- 5
$\tiny{b.2.1.16}$
\begin{align*}\displaystyle
y^\prime +\frac{2}{x}y &=\frac{\cos x}{x^2} &&(1)\\
u(x)&=\exp\int\frac{2}{x} \, dx = e^{2\ln{x}}=2x&&(2)\\
(2x y)'&=\int\frac{\cos x}{x^2} \, dx &&(3)\\
y(x)&=\frac{1}{2x}\left[-\dfrac{\cos(x)}{x}-\int\dfrac{\sin(x)}{x}\, dx\right] &&(4)\\
y(\pi)&=0 &&(5)\\
&=\frac{1}{2(\pi)}
\left[-\dfrac{\cos(\pi)}{\pi}
-\int\dfrac{\sin(\pi)}{\pi}\, dx
\right]=0 &&(6)\\
&=\color{red}{\frac{\sin x}{x^2}}&&(7)\\
&=\frac{0}{\pi^2}=0 &&(8)
\end{align*}
ok (4)-(8) were ? red is bk answer
\begin{align*}\displaystyle
y^\prime +\frac{2}{x}y &=\frac{\cos x}{x^2} &&(1)\\
u(x)&=\exp\int\frac{2}{x} \, dx = e^{2\ln{x}}=2x&&(2)\\
(2x y)'&=\int\frac{\cos x}{x^2} \, dx &&(3)\\
y(x)&=\frac{1}{2x}\left[-\dfrac{\cos(x)}{x}-\int\dfrac{\sin(x)}{x}\, dx\right] &&(4)\\
y(\pi)&=0 &&(5)\\
&=\frac{1}{2(\pi)}
\left[-\dfrac{\cos(\pi)}{\pi}
-\int\dfrac{\sin(\pi)}{\pi}\, dx
\right]=0 &&(6)\\
&=\color{red}{\frac{\sin x}{x^2}}&&(7)\\
&=\frac{0}{\pi^2}=0 &&(8)
\end{align*}
ok (4)-(8) were ? red is bk answer
Last edited: