- #1
Potatochip911
- 318
- 3
Homework Statement
$$\lim_{x\to\infty} \dfrac{(-1)^n\sqrt{n+1}}{n}$$
Homework Equations
3. The Attempt at a Solution [/B]
This is what I managed to do but I just wanted to verify that this is the correct way of solving it, I'm mainly concerned about the fact that I took the absolute value with the log function, is that a valid operation?
$$y=\lim_{x\to\infty} \dfrac{(-1)^n\sqrt{n+1}}{n} $$
$$ \ln y=\lim_{x\to\infty} \ln|\dfrac{(-1)^n\sqrt{n+1}}{n}| $$
$$ \ln y=\lim_{x\to\infty} \ln|\dfrac{(-1)^n\sqrt{n+1}}{n}| $$
$$\ln y=\lim_{x\to\infty} \ln|(-1)^n|+\lim_{x\to\infty} \ln|\dfrac{\sqrt{n+1}}{n}|$$
$$\ln y=\lim_{x\to\infty} \dfrac{\ln|1|}{n^{-1}}+\lim_{x\to\infty} \ln|{\sqrt{1/n+1/n^2}}|$$
$$\ln y=\lim_{x\to\infty} \dfrac{0}{n^{-2}}+ \ln|0|$$
$$\ln y=-\infty$$
$$y=e^{-\infty}$$
$$y=0$$