Solve Math Problem: Number of Passengers on a Bus

  • MHB
  • Thread starter anemone
  • Start date
  • Tags
    Bus
In summary, the Singapore model method is an effective way to solve primary math word problems by using visual models to represent the given information and find the solution. It has been proven to improve students' problem-solving skills and understanding of mathematical concepts.
  • #1
anemone
Gold Member
MHB
POTW Director
3,883
115
Hi all, this is another math problem that one can use the Singapore model method to solve. All are welcome to post a solution using the method you would like, if this problem interests you. :)

There were some passengers on a bus. At the first stop, $\dfrac{1}{5}$ of the passengers alighted and 80 boarded the bus. At the second stop, 240 passengers got off and 60 passengers boarded the bus. The bus now had $\dfrac{5}{8}$ of the number of passengers when it left the first stop. How many passengers were on the bus before the first stop?
 
Mathematics news on Phys.org
  • #2
anemone said:
Hi all, this is another math problem that one can use the Singapore model method to solve. All are welcome to post a solution using the method you would like, if this problem interests you. :)
Standard algebra:
There were some passengers on a bus.
Let the number passengers initially be x.

At the first stop, $\dfrac{1}{5}$ of the passengers alighted and 80 boarded the bus.
Now there are $x- \dfrac{1}{5}x+ 80= \dfrac{4}{5}x+ 80$ passengers on the bus.

At the second stop, 240 passengers got off and 60 passengers boarded the bus.
Now there are $\dfrac{4}{5}x+ 80- 240+ 60= \dfrac{4}{5}x- 100$ passengers on the bus.
The bus now had $\dfrac{5}{8}$ of the number of passengers when it left the first stop. How many passengers were on the bus before the first stop?
So $\dfrac{4}{5}x- 100= \dfrac{5}{8}\left(\dfrac{4}{5}x+ 80\right)= \dfrac{1}{2}x+ 50$.

Solve the equation $\dfrac{4}{5}x- 100= \dfrac{1}{2}x+ 50$ for x.

Subtract $\dfrac{1}{2}x$ from both sides- $\dfrac{4}{5}- \dfrac{1}{2}= \dfrac{8}{10}- \dfrac{5}{10}= \dfrac{3}{10}$.
$\dfrac{3}{10}x- 100= 50$.

Add 100 to both sides. $\dfrac{3}{10}x= 150$.

Multiply both sides by $\dfrac{10}{3}$.
$x= 500$.

There were originally 500 passengers on the bus.
(That's a large bus!)
Check:
(When I first did this problem, I made a trivial arithmetic mistake. Always check!)

At the first stop, $\dfrac{1}{5}$ of the passengers alighted and 80 boarded the bus.
$\dfrac{1}{5}$ of 500 is 100. 100 of the 500 passengers got off, leaving 500- 100= 400 passengers and another 80 boarded so there are now 480 passengers on the bus.
At the second stop, 240 passengers got off and 60 passengers boarded the bus.
480- 240= 240. 240+ 60= 300.

The bus now had $\frac{5}{8}$ of the number of passengers when it left the first stop.
When it left the first stop it had 480 passengers. $\frac{5}{8}$ of that is 5(60)= 300. Yes, that is what we got.

Before the first stop the bus had 500 passengers,

Now, how would the "Singapore model method" solve this problem?
 
  • #3
anemone said:
Hi all, this is another math problem that one can use the Singapore model method to solve. All are welcome to post a solution using the method you would like, if this problem interests you. :)

There were some passengers on a bus. At the first stop, $\dfrac{1}{5}$ of the passengers alighted and 80 boarded the bus. At the second stop, 240 passengers got off and 60 passengers boarded the bus. The bus now had $\dfrac{5}{8}$ of the number of passengers when it left the first stop. How many passengers were on the bus before the first stop?

My Attempt

After if left the 1st stop $\dfrac{5}{8}$ remained so $\dfrac{3}{8}$ was the number of more persons alighted than boarded

The number is 180

so $\dfrac{3}{8}$ of number of persons when it left the $1^{st}$ stop is 180

so number of persons when it left $1^{st}$ stop =$\dfrac{180}{{\frac{3}{8}}} = 480$

That was the number after 80 boarded

So the number before 80 boarded was 480-80 = 400

after $\dfrac{1}{5}$ got of remaining was $\dfrac{4}{5}$ which is 400

so number started with $\dfrac{400}{{\frac{4}{5}}} = 500$
 
  • #4
[TIKZ]
\filldraw [fill=yellow,thick] foreach \i in {-4,...,-1} { ({\i*2.4},0) rectangle ({(\i+2)*2.4},1) };
\filldraw [fill=green, thick, dotted] foreach \i in {3,...,9} { ({\i*0.8},0) rectangle ({(\i+2)*0.8},1) };
\node at (-8.5,1.4) {\small 1 unit = 2 parts};
\draw [<->] (-9.5, 1.2) -- (-7.2, 1.2);
\node at (-8.4,0.6) {\tiny alighted passengers};
\node at (-8.4,0.2) {\tiny at 1st stop};
\draw[thick, dotted] (-7.2, 1) -- (-9.5, 0);
\draw[thick, dotted] (-7.8, 1) -- (-9.6, 0.2);
\draw[thick, dotted] (-8.4, 1) -- (-9.65, 0.4);
\draw[thick, dotted] (-7.2, 0.7) -- (-9, 0);
\draw[thick, dotted] (-7.2, 0.4) -- (-8.2, 0);
\draw [<->] (-7.2, 1.2) -- (-6, 1.2);
\node at (-6.6,1.4) {\small 1 part};
\draw [<->] (-7.2, 2) -- (8.8, 2);
\node at (0,2.2) {\small Total passengers on the bus after 1st stop and before 2nd stop};
\draw [<->] (-1.2, 1.2) -- (4.8, 1.2);
\node at (2,1.5) {\small Number of passengers got off the bus at 2nd stop = 240 - 60 = 180};
\draw[thick, dotted] (4.8, 0.2) -- (3.6, 0);
\draw[thick, dotted] (4.8, 0.4) -- (2.4, 0);
\draw[thick, dotted] (4.8, 0.6) -- (1.2, 0);
\draw[thick, dotted] (4.8, 0.8) -- (-0, 0);
\draw[thick, dotted] (4.8, 1) -- (-1.2, 0);
\draw[thick, dotted] (3.6, 1) -- (-1.2, 0.2);
\draw[thick, dotted] (2.4, 1) -- (-1.2, 0.4);
\draw[thick, dotted] (1.2, 1) -- (-1.2, 0.6);
\draw[thick, dotted] (0, 1) -- (-1.2, 0.8);
\draw[thick, dotted] (-6,0) -- (-6,1);
\draw[thick, dotted] (-3.6,0) -- (-3.6,1);
\draw[thick, dotted] (-1.2,0) -- (-1.2,1);
\draw[thick, dotted] (1.2,0) -- (1.2,1);
\node at (2.8,0.5) {\small 10};
\node at (3.6,0.5) {\small 10};
\node at (4.4,0.5) {\small 10};
\node at (5.2,0.5) {\small 10};
\node at (6,0.5) {\small 10};
\node at (6.8,0.5) {\small 10};
\node at (7.6,0.5) {\small 10};
\node at (8.4,0.5) {\small 10};
[/TIKZ]

Represent the given information in the model diagram above, the question wanted us to find the value for 10 parts.

From the model diagram,

$\begin{align*}3 \text{ parts} + 30 &=180\\3 \text{ parts}&=150\\ 1\text{ part}&=50 \\ \therefore 10\text{ parts}&=500\end{align*}$
 
  • #5
Hi anemone,

Is there information available somewhere about the Singapore method ?
 
  • #6
Hi castor28!

Thanks for showing your interest in Singapore model method in solving primary math word problems.

I just found a few insightful articles that discuss about the effectiveness to use model method to solve word problems, I hope you or anyone who are interested (@Fantini) find those articles meaningful to you!

https://bsrlm.org.uk/wp-content/uploads/2016/02/BSRLM-IP-35-3-20.pdf
http://people.math.harvard.edu/~engelwar/MathS305/Singapore Model Method Text.pdf
https://files.eric.ed.gov/fulltext/EJ1115069.pdf
 

FAQ: Solve Math Problem: Number of Passengers on a Bus

How do you calculate the number of passengers on a bus?

The number of passengers on a bus can be calculated by counting the total number of seats on the bus and subtracting any empty seats. Alternatively, you can also count the number of passengers as they enter and exit the bus.

What if the bus has standing passengers?

If the bus has standing passengers, they should also be counted as part of the total number of passengers. In this case, you would need to count both the seated and standing passengers to get an accurate number.

Is there a standard number of seats on a bus?

No, the number of seats on a bus can vary depending on the size and type of the bus. Some buses may have more seats than others, and some may also have standing room only.

Can the number of passengers on a bus change during a trip?

Yes, the number of passengers on a bus can change during a trip. Passengers may get on or off at different stops, and the number of standing passengers may also fluctuate. It is important to count the number of passengers at a specific point in time to get an accurate number.

How can knowing the number of passengers on a bus be useful?

Knowing the number of passengers on a bus can be useful for various reasons. It can help determine the capacity of the bus, track ridership, and ensure that the bus is not overcrowded. It can also be used for planning and scheduling purposes.

Similar threads

Replies
4
Views
1K
Replies
5
Views
4K
Replies
20
Views
789
Replies
5
Views
1K
Replies
1
Views
826
Replies
7
Views
2K
Replies
8
Views
1K
Replies
3
Views
2K
Replies
3
Views
1K
Back
Top