- #1
debro5
- 5
- 0
I have this system :
[tex](A_1 \quad A_2 \quad A_3 \;...)\left( {\matrix{
{b_1 } \cr
{b_2 } \cr
{b_3 } \cr
{...} \cr
} } \right) = C[/tex]
where the A's are matrices that forms a vector, b is a vector and C a matrix. If I know C and the A's. How can I find the b's?
[tex]\left( {\matrix{
{b_1 } \cr
{b_2 } \cr
{b_3 } \cr
{...} \cr
} } \right) = (A_1^{ - 1} \quad A_2^{ - 1} \quad A_3^{ - 1} \;...)C
[/tex]
Surely not, this give another matrix. The A's are square but not necessarely invertable...
[tex](A_1 \quad A_2 \quad A_3 \;...)\left( {\matrix{
{b_1 } \cr
{b_2 } \cr
{b_3 } \cr
{...} \cr
} } \right) = C[/tex]
where the A's are matrices that forms a vector, b is a vector and C a matrix. If I know C and the A's. How can I find the b's?
[tex]\left( {\matrix{
{b_1 } \cr
{b_2 } \cr
{b_3 } \cr
{...} \cr
} } \right) = (A_1^{ - 1} \quad A_2^{ - 1} \quad A_3^{ - 1} \;...)C
[/tex]
Surely not, this give another matrix. The A's are square but not necessarely invertable...
Last edited by a moderator: