- #1
shinobi20
- 271
- 20
From cosmology, the friedmann equations are given by,
##H^2 = (\frac{\dot a}{a})^2 = \frac{8\pi G}{3} \rho \, , \quad \frac{\ddot a}{a} = -\frac{4\pi G}{3}(\rho+3p) \, , \quad## where ##\rho = \frac{1}{2}(\dot \phi^2 + \phi^2)## and ##p = \frac{1}{2}(\dot \phi^2 - \phi^2)##
To get ##\dot H##,
##\dot H = \frac{d}{dt}(\frac{\dot a}{a}) = \frac{\ddot a}{a} - (\frac{\dot a}{a})^2 = -4\pi G(\rho + p) = -4\pi G \dot \phi^2##.
I want to solve for ##H## using this equation, where ##0<t<10^7##. How should I solve this DE? It's ok if the solution is in the implicit form.
##H^2 = (\frac{\dot a}{a})^2 = \frac{8\pi G}{3} \rho \, , \quad \frac{\ddot a}{a} = -\frac{4\pi G}{3}(\rho+3p) \, , \quad## where ##\rho = \frac{1}{2}(\dot \phi^2 + \phi^2)## and ##p = \frac{1}{2}(\dot \phi^2 - \phi^2)##
To get ##\dot H##,
##\dot H = \frac{d}{dt}(\frac{\dot a}{a}) = \frac{\ddot a}{a} - (\frac{\dot a}{a})^2 = -4\pi G(\rho + p) = -4\pi G \dot \phi^2##.
I want to solve for ##H## using this equation, where ##0<t<10^7##. How should I solve this DE? It's ok if the solution is in the implicit form.