- #1
twoflower
- 368
- 0
Hi,
I have
[tex]
y'' - y' = \frac{1}{e^{x} + 1}
[/tex]
What I did:
[tex]
\lambda^2 - \lambda = 0
[/tex]
[tex]
\lambda_1 = 0
[/tex]
[tex]
\lambda_2 = 1
[/tex]FSS = [itex][1, e^x][/itex]
[tex]
y = a + be^x
[/tex]
[tex]
y' = a' + b'e^x + be^x
[/tex]
Putting first two terms zero, I get
[tex]
y'' = b'e^x + be^x
[/tex]
[tex]
y'' - y' = b'e^x + be^x - be^x = b'e^x = \frac{1}{e^x + 1}
[/tex]
[tex]
b' = \frac{1}{e^{2x} + e^x}
[/tex]
From the second condition
[tex]
a' + b'e^x = 0
[/tex]
I get
[tex]
a' = -\frac{e^x}{e^{2x} + e^x} = 1 - \frac{e^x}{1+e^x}
[/tex]
Anyway,
[tex]
a' + b'e^x = 0
[/tex]
now isn't true. Where do I do the mistake?
Thank you very much.
I have
[tex]
y'' - y' = \frac{1}{e^{x} + 1}
[/tex]
What I did:
[tex]
\lambda^2 - \lambda = 0
[/tex]
[tex]
\lambda_1 = 0
[/tex]
[tex]
\lambda_2 = 1
[/tex]FSS = [itex][1, e^x][/itex]
[tex]
y = a + be^x
[/tex]
[tex]
y' = a' + b'e^x + be^x
[/tex]
Putting first two terms zero, I get
[tex]
y'' = b'e^x + be^x
[/tex]
[tex]
y'' - y' = b'e^x + be^x - be^x = b'e^x = \frac{1}{e^x + 1}
[/tex]
[tex]
b' = \frac{1}{e^{2x} + e^x}
[/tex]
From the second condition
[tex]
a' + b'e^x = 0
[/tex]
I get
[tex]
a' = -\frac{e^x}{e^{2x} + e^x} = 1 - \frac{e^x}{1+e^x}
[/tex]
Anyway,
[tex]
a' + b'e^x = 0
[/tex]
now isn't true. Where do I do the mistake?
Thank you very much.