- #1
Uku
- 82
- 0
Hi! Merry christmas!
[tex]u_{t}=u_{xx}-u_{x}[/tex]
Can I solve it with separation of variables?
[tex]u=XT[/tex]
[tex]XT^{'}=T(X^{''}-X^{'})[/tex]
After rearranging
[tex]\frac{T^{'}}{T}=-\lambda^{2}[/tex] 1)
[tex]\frac{X^{''}}{X} - frac{X^{'}}{X}=-\lambda^{2}[/tex]
The solution to 1) is simple
[tex]T=Acos(\lambda t)+Bsin(\lambda t)[/tex]
Now, for the X, I write out a characteristic equation and get that
[tex]X=Ce^{\frac{1}{2}+\sqrt{\frac{1}{4} - \lambda^{2}}x}+De^{\frac{1}{2}-\sqrt{\frac{1}{4} - \lambda^{2}}x}[/tex]
Since u=XT, the solution would be:
[tex]XT=(Acos(\lambda t)+Bsin(\lambda t))(Ce^{\frac{1}{2}+\sqrt{\frac{1}{4} - \lambda^{2}}x}+De^{\frac{1}{2} - \sqrt{\frac{1}{4} - \lambda^{2}}x})[/tex]
Now, have I done it wrong?
(I know that I have not checked, I will do it now)
Thanks,
Uku
Homework Statement
[tex]u_{t}=u_{xx}-u_{x}[/tex]
Can I solve it with separation of variables?
The Attempt at a Solution
[tex]u=XT[/tex]
[tex]XT^{'}=T(X^{''}-X^{'})[/tex]
After rearranging
[tex]\frac{T^{'}}{T}=-\lambda^{2}[/tex] 1)
[tex]\frac{X^{''}}{X} - frac{X^{'}}{X}=-\lambda^{2}[/tex]
The solution to 1) is simple
[tex]T=Acos(\lambda t)+Bsin(\lambda t)[/tex]
Now, for the X, I write out a characteristic equation and get that
[tex]X=Ce^{\frac{1}{2}+\sqrt{\frac{1}{4} - \lambda^{2}}x}+De^{\frac{1}{2}-\sqrt{\frac{1}{4} - \lambda^{2}}x}[/tex]
Since u=XT, the solution would be:
[tex]XT=(Acos(\lambda t)+Bsin(\lambda t))(Ce^{\frac{1}{2}+\sqrt{\frac{1}{4} - \lambda^{2}}x}+De^{\frac{1}{2} - \sqrt{\frac{1}{4} - \lambda^{2}}x})[/tex]
Now, have I done it wrong?
(I know that I have not checked, I will do it now)
Thanks,
Uku
Last edited: