MHB Solve Periodic Problem: Find Function $u \in C^2(\mathbb{R})$

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Periodic
AI Thread Summary
The discussion revolves around finding a periodic function $u \in C^2(\mathbb{R})$ that satisfies the equation $-u'' + qu = f$, where $q$ and $f$ are periodic functions. The periodicity condition $u_{i+N+1} = u_i$ is clarified, emphasizing that it ensures the function's values repeat after one full period $(b-a)$. This condition is crucial for maintaining the periodic nature of the function across the defined intervals. The participants confirm that the values of $a$ and $b$ do not need to be set as $0$ and $N+1$, respectively. Overall, the conversation highlights the importance of periodic boundary conditions in solving the differential equation.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

Periodic problem

We are looking for a periodic function $u \in C^2(\mathbb{R})$ with period $(b-a)$

$$-u''+qu=f \text{ where } q,f \text{ periodic functions with period } (b-a) \\ u(a)=u(b) \\ u(x)=u(x+(b-a))$$

$x_i=a+ih \\ h=\frac{b-a}{N+1}$

$\mathbb{R}_{\text{per}}^{N+1}=\{ U=(u_i)_{i \in \mathbb{Z}}: u_i \in \mathbb{R} \text{ and } u_{i+N+1}=u_i, i \in \mathbb{Z}\}$

$-\frac{u_{i-1}-2u_i+u_{i+1}}{h^2}+q(x_i) u_i =f(x_i), i=0,1, \dots, N (\star)$

$u_{-1}=u_N \\ u_{N+1}=u_0$

$U=\begin{bmatrix}
u_0\\
u_1\\
\dots\\
\dots\\
u_N
\end{bmatrix}$

$i=0 \overset{\star}{\Rightarrow} -\frac{u_N-2u_0+u_1}{h^2}+q(x_0) u_0=f(x_0)$

$\dots$

$i=1 \overset{\star}{\Rightarrow} -\frac{u_{N-1}-2u_N+u_0}{h^2}+q(x_N) u_N=f(x_N)$
Could you explain to me why we want that $u_{i+N+1}=u_i, i \in \mathbb{Z}$ ?
Do we suppose that $b=N+1$, $a=0$ ? (Thinking)
 
Mathematics news on Phys.org
evinda said:
Could you explain to me why we want that $u_{i+N+1}=u_i, i \in \mathbb{Z}$ ?
Do we suppose that $b=N+1$, $a=0$ ? (Thinking)

Hey evinda! (Smile)

That's because:
$$u_{i+N+1} = u(x_{i+N+1}) = u(a+(i+N+1)h) = u((a+ih) + (N+1)h) = u(x_i+(b-a)) = u(x_i) = u_i$$
(Mmm)

And no, we wouldn't suppose that $b=N+1$, $a=0$. (Shake)
 
I like Serena said:
That's because:
$$u_{i+N+1} = u(x_{i+N+1}) = u(a+(i+N+1)h) = u((a+ih) + (N+1)h) = u(x_i+(b-a)) = u(x_i) = u_i$$
(Mmm)

And no, we wouldn't suppose that $b=N+1$, $a=0$. (Shake)
I understand... Thanks a lot! (Smile)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
5
Views
2K
Replies
1
Views
2K
Replies
125
Views
19K
Replies
9
Views
2K
Replies
10
Views
2K
Back
Top