MHB Solve Probability Inequality | Finite Probabilistic Space

AI Thread Summary
To solve the probability inequality Pr[A∩B] ≥ 9*Pr[A]*Pr[B] > 0, a finite probabilistic space can be defined with Ω = {a_1, a_2, ..., a_m} and uniform probabilities p(a_i) = 1/m for i = 1, 2, ..., m. By selecting events A = {a_1, a_2} and B = {a_1, a_3}, the condition simplifies to requiring m ≥ 36. This ensures that the intersection probability meets the inequality criteria. Thus, a finite space with at least 36 elements satisfies the problem's requirements.
alfred2
Messages
8
Reaction score
0
Hi! I have to do this exercise:

Define a finite probabilistic Space (Ω; Pr[ ]) and 2 events A,B⊆ Ω and Pr[A] ≠ Pr so that we can verify that
Pr[A∩B]>=9*Pr[A]*Pr > 0. (1)
___________________________________________
I've been trying it but i have reached this conclusion:
If Pr[A]>0 Pr[A]=Pr[A∩B]/P[B|A]
IF Pr>0 Pr=Pr[A∩B]/P[A|B]
Substituting in (1) we have:
P[A|B]*P[A|B]>=9*Pr[A∩B]
I don't know if this help. Can anyone help me please? Thanks
 
Mathematics news on Phys.org
I solve the above question from an unanswered MHB thread.

Consider $\Omega=\{a_1,a_2,\ldots,a_m\}$ and the probabilty on $\mathcal{P}(\Omega)$ defined by: $$p(a_i)=\frac{1}{m}\quad \forall i=1,2,\ldots,m$$ Consider $A=\{a_1,a_2\}$ and $B=\{a_1,a_3\}$. Then, $$p(A\cap B)\ge 9p(A)p(B)\Leftrightarrow \frac{1}{m}\geq 9\cdot \frac{2}{m}\cdot\frac{2}{m}\Leftrightarrow 1\ge \frac{36}{m}\Leftrightarrow m\ge 36$$ That is, you only need to choose $\Omega$ with 36 elements.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top