MHB Solve Quadratic Equation: Ratio of Two Cones' Radii

  • Thread starter Thread starter Monoxdifly
  • Start date Start date
AI Thread Summary
Azis is constructing two cones with specific relationships between their dimensions. The surface area of the first cone is twice that of the second, and its side length is also double. The equations derived from these relationships lead to a ratio of the radii, suggesting that r1 is four times r2. However, the base area must also be considered to finalize the ratio. The discussion emphasizes the importance of quadratic equations in solving for the radius ratio of the cones.
Monoxdifly
MHB
Messages
288
Reaction score
0
Azis wants to make two cones using cartons. The surface area of the first cone is twice the second. The side length of the first cone is also twice the second. Determine the ratio of those cones' radius!

s1 = 2s2
L1 = 2L2
πr1(r1 + s1) = 2πr2(r2 + s2)
r1(r1 + 2s2) = 2r2(r2 + s2)

I was stuck with quadratic equations...
 
Mathematics news on Phys.org
Monoxdifly said:
Azis wants to make two cones using cartons. The surface area of the first cone is twice the second. The side length of the first cone is also twice the second. Determine the ratio of those cones' radius!

s1 = 2s2
L1 = 2L2
πr1(r1 + s1) = 2πr2(r2 + s2)
r1(r1 + 2s2) = 2r2(r2 + s2)

I was stuck with quadratic equations...
$A_1 = 2A_2 \implies \pi r_1 \cdot L_1 = 2\pi r_2 \cdot L_2 \implies \pi r_1 \cdot L_1 = 2\pi r_2 \cdot 2L_1 \implies \dfrac{r_1}{r_2} = 4$
 
But we must take into account the base area...
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top