- #1
subzero0137
- 91
- 4
1.
2. V=IR, Q=CV3.
To calculate the current in the circuit in the case when the switch is open and steady state is reached, I assumed that no current will flow "across" the capacitors and so the current I will simply be emf/(r+R1+R2) = 12 V/(1+3+2) = 2 A. The voltage drop across r would be V=IR=2 A * 1 ohms = 2 V, therefore the voltage across the capacitors would be 10 V. Since C1 and C2 are in series, Q1=Q2=CV where C is the combined capacitance equal to (4/3)F and V=10V. Therefore Q1=Q2=(40/3) C. Is this correct so far?
I'm not sure how to analyze the circuit when the switch closes.
To calculate the current in the circuit in the case when the switch is open and steady state is reached, I assumed that no current will flow "across" the capacitors and so the current I will simply be emf/(r+R1+R2) = 12 V/(1+3+2) = 2 A. The voltage drop across r would be V=IR=2 A * 1 ohms = 2 V, therefore the voltage across the capacitors would be 10 V. Since C1 and C2 are in series, Q1=Q2=CV where C is the combined capacitance equal to (4/3)F and V=10V. Therefore Q1=Q2=(40/3) C. Is this correct so far?
I'm not sure how to analyze the circuit when the switch closes.