- #1
Dell
- 590
- 0
i have reached a possible answer which is not quite like the one my book has, can someone please tell me if I am wrong.
the question asks if the following converges or diverges.
∞
[tex]\sum[/tex](-1)n-1(ln(n))p/n (p>0)
n=1
i learned that if i have a series which changes sign i take the abs value of [tex]\sum[/tex]An and test that series, if [tex]\sum[/tex]|An| converges then An definitely converges, if [tex]\sum[/tex]|An| diverges, i need to check if lim(n->∞)An=0 and if An>A(n+1) (leibnitz)
i integrated the abs value of function in order to find its behaviour, if i get ∞ then the abs series diverges
[tex]\int[/tex]((ln(x))p/x)dx
t=ln(x)
dt=dx/x
x=et
[tex]\int[/tex]tpdt (from 0 to ∞)
=[lim[b->∞]][tex]\frac{1}{p+1}[/tex](tp+1)|[tex]^{b}_{0}[/tex]
=[lim[b->∞]][tex]\frac{1}{p+1}[/tex](bp+1-0p+1)= ∞
therefore the abs series diverges so i need to check limAn and An+1
lim An = lnp(n)/n
n->∞
surely this is dependant on p, i need to be equal to 0, therefore i need n to be bigger than lnp(n),(since we are talking about a limit of n-> ∞)
lnp(n) < n
p < logln(n)(ln(n))
is this correct, or will lnp(n) < n always be true since n->∞?
now how do i prove than An > An+1
[tex]\frac{lnp(n+1)}{n+1}[/tex] < [tex]\frac{lnp(n)}{n}[/tex]
?
alternatively, do you see any better ways to solve this??
the question asks if the following converges or diverges.
∞
[tex]\sum[/tex](-1)n-1(ln(n))p/n (p>0)
n=1
i learned that if i have a series which changes sign i take the abs value of [tex]\sum[/tex]An and test that series, if [tex]\sum[/tex]|An| converges then An definitely converges, if [tex]\sum[/tex]|An| diverges, i need to check if lim(n->∞)An=0 and if An>A(n+1) (leibnitz)
i integrated the abs value of function in order to find its behaviour, if i get ∞ then the abs series diverges
[tex]\int[/tex]((ln(x))p/x)dx
t=ln(x)
dt=dx/x
x=et
[tex]\int[/tex]tpdt (from 0 to ∞)
=[lim[b->∞]][tex]\frac{1}{p+1}[/tex](tp+1)|[tex]^{b}_{0}[/tex]
=[lim[b->∞]][tex]\frac{1}{p+1}[/tex](bp+1-0p+1)= ∞
therefore the abs series diverges so i need to check limAn and An+1
lim An = lnp(n)/n
n->∞
surely this is dependant on p, i need to be equal to 0, therefore i need n to be bigger than lnp(n),(since we are talking about a limit of n-> ∞)
lnp(n) < n
p < logln(n)(ln(n))
is this correct, or will lnp(n) < n always be true since n->∞?
now how do i prove than An > An+1
[tex]\frac{lnp(n+1)}{n+1}[/tex] < [tex]\frac{lnp(n)}{n}[/tex]
?
alternatively, do you see any better ways to solve this??