Solve sin³(x) - cos³(x) = sin²(x)

  • MHB
  • Thread starter anemone
  • Start date
In summary, the conversation discusses a trigonometric equation, sin³x-cos³x=sin²x, and the attempts made to solve it. The first attempt involved dividing the equation by sin³x, the second attempt used triple angle formulas, and the third attempt involved factoring the equation. Finally, one of the participants shares their solution using a polynomial equation and the rational root theorem. The conversation ends with a clarification about the need to add 2πk to the solutions.
  • #1
anemone
Gold Member
MHB
POTW Director
3,883
115
Hi MHB,

This seemingly very simple and straightforward trigonometric equation (Solve for x for which sin³x-cos³x=sin²x) has me stumped! I am fretting after I exhausted all kind of tricks that I could think of (which I will mention in my attempts next) trying to attempt the problem and now, I wanted so much to ask for help here at MHB!

First attempt:

I first divided through the equation by sin³x, bearing in mind sin³x≠0 and obtained:

\(\displaystyle 1-\cot^3x=cscx\)

\(\displaystyle (1-\cot^3x)^2=\csc^2x\)

\(\displaystyle (1-\cot^3x)^2=1+\cot^2x\)

If l let \(\displaystyle \cot x=k,\) the equation above becomes \(\displaystyle (1-k^3)^2=1+k^2\) and this is a futile attempt to say the least.

Second attempt:

I applied the triple angle formulas for both sine and cosine to the given equation and ended up with

\(\displaystyle \frac{3\sin x-\sin 3x}{4}-\frac{\cos3x+3\cos x}{4}=\sin^2x\)

\(\displaystyle 3\sin x-\sin 3x-\cos 3x-3\cos x=2(2\sin^2x)\)

\(\displaystyle 3(\sin x-\cos x)-(\sin3x+\cos3x)=2(1-\cos2x)
\)
This is another unwise substitution to make, knowing it can hardly bring us any closer to the answer...

Anyway, this is how I approached it.

\(\displaystyle 3( \sin x- \cos x)-(\sin3x+\cos3x)=2(1-\cos2x)\)

\(\displaystyle 3\sqrt{2}\sin(x-\frac{\pi}{4}-\sqrt{2}\sin(3x+\frac{\pi}{4})=2(1-\cos 2x)\) I stopped right at this point, because we can tell this is a very bad move...

Third attempt:

\(\displaystyle \sin^3 x-\cos^3 x=\sin^2 x\)

\(\displaystyle \sin^2 x(\sin x-1)=\cos x\cos^2 x=\cos x(1-\sin^2 x)=\cos x(1+\sin x)(1-\sin x)\)

\(\displaystyle \sin^2 x(\sin x-1)-\cos x(1+\sin x)(1-\sin x)=0\)

\(\displaystyle \sin^2 x(\sin x-1)+\cos x(1+\sin x)(\sin x-1)=0\)

\(\displaystyle (\sin^2 x+\cos x(1+\sin x))(\sin x-1)=0\)

\(\displaystyle (\sin^2 x+\cos x+\sin x\cos x))(\sin x-1)=0\)

and obviously \(\displaystyle \sin x=1\) is an answer to the problem.

And now, all kind of thoughts enter my mind, I am not even sure when we have the case ab=0, if a=0 is imminent and true, then b isn't necessary a zero. And everything seems to reach an impasse after getting sinx=1 as one of the answers to the problem.

So, I decided to factor the LHS of the given equation and see how far I can go with this approach...

\(\displaystyle (\sin x-\cos x)(\sin^2 x+\sin x\cos x+\cos^2 x)=\sin^2 x\)

\(\displaystyle (\sin x-\cos x)(1+\sin x\cos x)=\sin^2 x\)

and it's also safe to say at this juncture this won't work out well and I am at my wit's end to solve this problem.

I would appreciate it if someone could offer me some hints to solve it.

Thanks.
 
Mathematics news on Phys.org
  • #2
Re: Solve sin³x-cos³x=sin²x

Hello
This is how I did it. We have,
\[ \sin^3x - \cos^3 x = \sin^2 x \]
Write this as the following.
\[ \sin^3x-\sqrt{(1-\sin^2x)}\;(1-\sin^2x) = \sin^2x \]
Here let \( t = \sin x\), and then rearranging the terms we get a polynomial in t.
\( (t^3 - t^2)^2 = (1-t^2)^3 \). Expanding this we have,
\[ 2t^6 - 2t^5 - 2t^4 + 3t^2 - 1 = 0 \]
Now using the rational root theorem and synthetic division, we can arrive at \( (t-1)^2 \) as
one factor. So obviously \(t=1\) is one root. The remainder polynomial equation then is
\[ 2t^4+2t^3 - 2t -1 = 0 \]
This is a quartic equation, for which there are known solutions. For this equation there
are two real and two imaginary solutions. The real solutions are \(t = 0.903408 \) and
\(t = -0.582522 \). Plugging back in the original equation for \( \sin x\), we can solve for \(x\).
\( x = 1.12765 \) and \( x = 3.76342 \), also the first solution of \( t=1 \) leads to \( x = \frac{\pi}{2}\).
So three solutions are \(x = 1.12765\;\;x = 3.76342\;\;x = \frac{\pi}{2} \)
 
  • #3
Re: Solve sin³x-cos³x=sin²x

IssacNewton said:
Hello
This is how I did it. We have,
\[ \sin^3x - \cos^3 x = \sin^2 x \]
Write this as the following.
\[ \sin^3x-\sqrt{(1-\sin^2x)}\;(1-\sin^2x) = \sin^2x \]
Here let \( t = \sin x\), and then rearranging the terms we get a polynomial in t.
\( (t^3 - t^2)^2 = (1-t^2)^3 \). Expanding this we have,
\[ 2t^6 - 2t^5 - 2t^4 + 3t^2 - 1 = 0 \]
Now using the rational root theorem and synthetic division, we can arrive at \( (t-1)^2 \) as
one factor. So obviously \(t=1\) is one root. The remainder polynomial equation then is
\[ 2t^4+2t^3 - 2t -1 = 0 \]
This is a quartic equation, for which there are known solutions. For this equation there
are two real and two imaginary solutions. The real solutions are \(t = 0.903408 \) and
\(t = -0.582522 \). Plugging back in the original equation for \( \sin x\), we can solve for \(x\).
\( x = 1.12765 \) and \( x = 3.76342 \), also the first solution of \( t=1 \) leads to \( x = \frac{\pi}{2}\).
So three solutions are \(x = 1.12765\;\;x = 3.76342\;\;x = \frac{\pi}{2} \)

I think you need to add \(+ 2\pi k\) where \(k\in\mathbb{Z}\) since there are infinitely many solutions for each principle argument.
 
  • #4
Re: Solve sin³x-cos³x=sin²x

I am assuming that \( x \in [0,2\pi] \)
 
  • #5
Re: Solve sin³x-cos³x=sin²x

IssacNewton said:
Hello
This is how I did it. We have,
\[ \sin^3x - \cos^3 x = \sin^2 x \]
Write this as the following.
\[ \sin^3x-\sqrt{(1-\sin^2x)}\;(1-\sin^2x) = \sin^2x \]
Here let \( t = \sin x\), and then rearranging the terms we get a polynomial in t.
\( (t^3 - t^2)^2 = (1-t^2)^3 \). Expanding this we have,
\[ 2t^6 - 2t^5 - 2t^4 + 3t^2 - 1 = 0 \]
Now using the rational root theorem and synthetic division, we can arrive at \( (t-1)^2 \) as
one factor. So obviously \(t=1\) is one root. The remainder polynomial equation then is
\[ 2t^4+2t^3 - 2t -1 = 0 \]
This is a quartic equation, for which there are known solutions. For this equation there
are two real and two imaginary solutions. The real solutions are \(t = 0.903408 \) and
\(t = -0.582522 \). Plugging back in the original equation for \( \sin x\), we can solve for \(x\).
\( x = 1.12765 \) and \( x = 3.76342 \), also the first solution of \( t=1 \) leads to \( x = \frac{\pi}{2}\).
So three solutions are \(x = 1.12765\;\;x = 3.76342\;\;x = \frac{\pi}{2} \)
I agree with the solutions $x = 3.76342$ and $x = \frac{\pi}{2}$, but not with $x = 1.12765$. The reason is that when going from $\sin x$ to $x$ you need to ensure that you choose the angle in the correct quadrant. When you check against the original equation $\sin^3x - \cos^3x = \sin^2x$, you find that both solutions $\sin x = 0.903408$ and $\sin x = -0.582522$ require $\cos x$ to be negative. So in both cases you need to have $x$ in the interval $\bigl[\frac\pi2,\frac{3\pi}2\bigr]$. Therefore the solution is not $x = 1.12765$ but $x = \pi - 1.12765 = 2.01394$.

Ideally, it would be far better to have an exact solution rather than these numerical approximations. But I am not convinced that that can be done for this problem.
 
  • #6
Re: Solve sin³x-cos³x=sin²x

Opalg, thanks for pointing mistake. I did the math in hurry.
Since you are from UK, you must have heard of S.L. Loney who did write a book
on trigonometry. I think this problem could be from that book.
 

FAQ: Solve sin³(x) - cos³(x) = sin²(x)

What is the solution to the equation sin³(x) - cos³(x) = sin²(x)?

The solution to this equation is x = 0. This can be found by using trigonometric identities and solving for x.

How do I solve an equation involving both sine and cosine?

To solve an equation involving both sine and cosine, you can use trigonometric identities and algebraic manipulation to simplify the equation and find the solution.

Can this equation be solved graphically?

Yes, this equation can be solved graphically by graphing both sides of the equation and finding the points of intersection. However, this method may not give an exact solution and may only provide estimates.

Are there any special values for which this equation is true?

Yes, there are special values for which this equation is true. These values include x = 0, x = π/2, x = π, and x = 3π/2. These values can be found by substituting them into the equation and verifying that they satisfy the equation.

Can this equation be solved using a calculator?

Yes, this equation can be solved using a calculator by inputting both sides of the equation as separate functions and finding the points of intersection. However, this may only provide estimates and not an exact solution.

Similar threads

Back
Top