- #1
Von Neumann
- 101
- 4
Question:
Find all numbers [itex]x[/itex] for which [itex]\frac{1}{x}+\frac{1}{1-x}>0[/itex].
Solution:
If [itex]\frac{1}{x}+\frac{1}{1-x}>0[/itex],
then [itex]\frac{1-x}{x(1-x)}+\frac{x}{x(1-x)}>0[/itex];
hence [itex]\frac{1}{x(1-x)}>0[/itex].
Now we note that
[itex]\frac{1}{x(1-x)} \rightarrow ∞[/itex] as [itex]x \rightarrow 0[/itex]
and [itex]\frac{1}{x(1-x)} \rightarrow 0[/itex] as [itex]x \rightarrow 1[/itex].
Thus, [itex]0<x<1[/itex].
Notes:
Not quite sure if that's the sort of solution Spivak is looking for in Ch.1.
Find all numbers [itex]x[/itex] for which [itex]\frac{1}{x}+\frac{1}{1-x}>0[/itex].
Solution:
If [itex]\frac{1}{x}+\frac{1}{1-x}>0[/itex],
then [itex]\frac{1-x}{x(1-x)}+\frac{x}{x(1-x)}>0[/itex];
hence [itex]\frac{1}{x(1-x)}>0[/itex].
Now we note that
[itex]\frac{1}{x(1-x)} \rightarrow ∞[/itex] as [itex]x \rightarrow 0[/itex]
and [itex]\frac{1}{x(1-x)} \rightarrow 0[/itex] as [itex]x \rightarrow 1[/itex].
Thus, [itex]0<x<1[/itex].
Notes:
Not quite sure if that's the sort of solution Spivak is looking for in Ch.1.