MHB Solve System of 2 Variables: $x^5+y^5=33,\,x+y=3$

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    System Variables
AI Thread Summary
The system of equations $x^5+y^5=33$ and $x+y=3$ leads to two possible values for the product $xy$: either 2 or 7. The first case, where $xy=2$, yields real solutions $(x=1,y=2)$ and $(x=2,y=1)$. The second case, with $xy=7$, results in no real solutions. Additionally, complex solutions are identified as $x=(3+i\sqrt{19})/2$ and $y=(3-i\sqrt{19})/2$, along with their reverse. The discussion emphasizes both real and complex solutions to the original system.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Solve the system $x^5+y^5=33,\,x+y=3$.
 
Mathematics news on Phys.org
[sp]$(x+y)^5=x^5+y^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4=33+5xy(x^3+y^3)+10x^2y^2(x+y)=

=33+5xy((x+y)^3-3xy(x+y))+30x^2y^2= 33+5xy(27-9xy)+30x^2y^2=243$
or
$15x^2y^2-135xy+210=0$
or
$x^2y^2-9xy+14=0$
And xy=7 or xy=2 impling the following 2 systems of equations :

x+y=3. (A)
xy=2

x+y=3 (B)
xy=7
And (A) gives (x=1,y=2),(x=2,y=1) (B) has no real solutions[/sp]
 
Last edited:
Thanks for participating, solakis! Ah, the question is meant to ask for complex solutions too! (Nod)
 
solakis said:
[sp]$(x+y)^5=x^5+y^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4=33+5xy(x^3+y^3)+10x^2y^2(x+y)=

=33+5xy((x+y)^3-3xy(x+y))+30x^2y^2= 33+5xy(27-9xy)+30x^2y^2=243$
or
$15x^2y^2-135xy+210=0$
or
$x^2y^2-9xy+14=0$
And xy=7 or xy=2 impling the following 2 systems of equations :

x+y=3. (A)
xy=2

x+y=3 (B)
xy=7
And (A) gives (x=1,y=2),(x=2,y=1) (B) has no real solutions[/sp]
[sp]The complex solutions are:
[x=(3+i$\sqrt 19$)/2, y=(3-i$\sqrt 19$)/2]...[x=(3-i$\sqrt 19$)/2 , y=( 3+i$\sqrt 19$)/2][/sp]
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top