MHB Solve the Floor Value of x in $x^2+1=2x$

  • Thread starter Thread starter solakis1
  • Start date Start date
  • Tags Tags
    Value
AI Thread Summary
The equation $[x^2+1] = [2x]$, where [x] denotes the floor function, is discussed with an initial solution of $x=1$. The approach involves establishing inequalities based on the properties of the floor function, leading to the conclusion that $x^2 - 2x + 1 = 0$. However, further analysis reveals that the complete solution is actually the intervals $x \in [1/2, \sqrt{2}) \cup [3/2, \sqrt{3})$. The discussion highlights the need for a deeper understanding of the floor function's behavior in solving such equations.
solakis1
Messages
407
Reaction score
0
Solve the following equation

[$x^2+1$]=[2x] ,where [x] is the floor value of x
 
Mathematics news on Phys.org
I'm getting only $x=1$ as the answer.
Here is my approach please do tell me If I'm wrong.
we know that $x-1 \le [x] \lt x$ so
$x^2 \le [x^2+1] \lt x^2 + 1 $ and
$2x-1 \le [2x] \lt 2x$
so the upper limits and lower limits must be equal
$x^2 - 2x + 1 = 0$ $\implies$ $x=1$
 
DaalChawal said:
I'm getting only $x=1$ as the answer.
Here is my approach please do tell me If I'm wrong.
we know that $x-1 \le [x] \lt x$ so
$x^2 \le [x^2+1] \lt x^2 + 1 $ and
$2x-1 \le [2x] \lt 2x$
so the upper limits and lower limits must be equal
$x^2 - 2x + 1 = 0$ $\implies$ $x=1$
DaalChawal said:
so the upper limits and lower limits must be equal
Where do you base that assumption
I mean which axiom,definition ,theorem supports that assumption

The answer to the problem is : $x\in$[1/2,$\sqrt 2$)U[3/2,$\sqrt 3$)
Here we have that whole intervals is the answer
 
hint:
[sp] put $[x^2+1]=n=[2x]$[/sp]
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
2
Views
2K
Replies
14
Views
2K
Replies
7
Views
1K
Replies
6
Views
1K
Replies
10
Views
2K
Back
Top