- #1
chwala
Gold Member
- 2,753
- 388
- Homework Statement
- This is my own question (set by me).
Solve for ##x## given,
##\log_{4} x = \log_{11} (x+6)##.
- Relevant Equations
- understanding of change of base.
In my working i have,
##\dfrac{\log_{11} x }{\log_{11} 4}= \log_{11} (x+6)##
##\dfrac{\log_{11} x }{0.5781}= \log_{11} (x+6)##
##\log_{11} x = \log_{11} \left[(x+6)\right]^{0.5781}##
##x^{1.729} = x+ 6##
##x^{1.729} -x-6=0##
Having ##f(x) = x^{1.729} -x-6##
At this point i made use of Newton's method. i.e
##x_{n+1} =x_n - \dfrac{f(x)}{f'(x)}##
Letting ##x_0 = 3##,
##x_1 = 3.8127##
##x_2= 3.8127- \dfrac{0.3019}{3.5868} = 3.72854##
##x_3= 3.72854 - \dfrac{0.00320}{3.512807} = 3.7191##
##x_4= 3.7191 - \dfrac{-0.029919}{3.504475} = 3.727##
##x≅3.73##
There may be a better approach hence my post. Cheers.
##\dfrac{\log_{11} x }{\log_{11} 4}= \log_{11} (x+6)##
##\dfrac{\log_{11} x }{0.5781}= \log_{11} (x+6)##
##\log_{11} x = \log_{11} \left[(x+6)\right]^{0.5781}##
##x^{1.729} = x+ 6##
##x^{1.729} -x-6=0##
Having ##f(x) = x^{1.729} -x-6##
At this point i made use of Newton's method. i.e
##x_{n+1} =x_n - \dfrac{f(x)}{f'(x)}##
Letting ##x_0 = 3##,
##x_1 = 3.8127##
##x_2= 3.8127- \dfrac{0.3019}{3.5868} = 3.72854##
##x_3= 3.72854 - \dfrac{0.00320}{3.512807} = 3.7191##
##x_4= 3.7191 - \dfrac{-0.029919}{3.504475} = 3.727##
##x≅3.73##
There may be a better approach hence my post. Cheers.
Last edited: