- #1
chwala
Gold Member
- 2,752
- 387
- Homework Statement
- ##P,Q,R## and ##S## are four points on the hyperbola ##x=ct, y=\dfrac{c}{t}## with parameters ##p,q,r## and ##s## respectively. Prove that, if the chord ##PQ## is perpendicular to the chord ##RS##, then ##pqrs=-1##.
- Relevant Equations
- parametric equations
My take;
##y=\dfrac{c^2}{x}##
##y+x\dfrac{dy}{dx}=0##
##\dfrac{dy}{dx}=\dfrac{-y}{x}##
##y-\dfrac{c}{t}=-\dfrac{y}{x}(x-ct)##
##yt-c=-\dfrac{yt}{x}(x-ct)##
##xyt-cx=-yt(x-ct)##
##c^2t-cx=-cx+yct^2##
##c^2t-cx=-cx+ytct##
##c^2t-cx=-cx+c^2t##
##⇒-cx=-cx##
##⇒cx=cx##
Therefore it follows that,
##\dfrac{c}{c}=\dfrac{x}{x}##
##x=c##
##y## will be given by,
##y=\dfrac{c^2}{c}=c##
point P will have co-ordinates ##(x,y)=(c,c)## and point Q will have co-ordinates ##(x,y)=(-c,-c)## where gradient is given by;
##m=\dfrac{c--c}{c--c}=\dfrac{2c}{2c}=1##
It follows that the perpendicular to the chord RS will have gradient =-1.
I do not have the solution to this question...your input is highly appreciated...
##y=\dfrac{c^2}{x}##
##y+x\dfrac{dy}{dx}=0##
##\dfrac{dy}{dx}=\dfrac{-y}{x}##
##y-\dfrac{c}{t}=-\dfrac{y}{x}(x-ct)##
##yt-c=-\dfrac{yt}{x}(x-ct)##
##xyt-cx=-yt(x-ct)##
##c^2t-cx=-cx+yct^2##
##c^2t-cx=-cx+ytct##
##c^2t-cx=-cx+c^2t##
##⇒-cx=-cx##
##⇒cx=cx##
Therefore it follows that,
##\dfrac{c}{c}=\dfrac{x}{x}##
##x=c##
##y## will be given by,
##y=\dfrac{c^2}{c}=c##
point P will have co-ordinates ##(x,y)=(c,c)## and point Q will have co-ordinates ##(x,y)=(-c,-c)## where gradient is given by;
##m=\dfrac{c--c}{c--c}=\dfrac{2c}{2c}=1##
It follows that the perpendicular to the chord RS will have gradient =-1.
I do not have the solution to this question...your input is highly appreciated...