- #1
chwala
Gold Member
- 2,753
- 388
- Homework Statement
- For the space curve; ##\left[x=t-\dfrac{t^3}{3}, y=t^2,
z=t+\dfrac{t^3}{3} \right]##
Find;
1. Unit tangent
2. Curvature
3. Principal Normal
4. Binormal
5. Torsion
- Relevant Equations
- vector differentiation
Relatively new area to me; will solve one -at- time as i enjoy the weekend with coffee.
1. Unit tangent
##r=xi+yj+zk##
##r=(t-\dfrac{t^3}{3})i+t^2j+(t+\dfrac{t^3}{3})k##
##T=\dfrac{dr}{dt} ⋅\dfrac{dt}{ds}##
##\dfrac{dr}{dt}=(1-t^2)i+2tj+(1+t^2)k##
##\dfrac{ds}{dt}=\sqrt{(1-t^2)^2+4t^2+(1+t^2)^2}##
##=\sqrt{1-2t^2+t^4+4t^2+1+2t^2+t^4}##
##=\sqrt{2t^4+4t^2+2}##
## =\sqrt{2}(1+t^2)##
##T=\dfrac{(1-t^2)i+2tj+(1+t^2)k}{\sqrt{2} (1+t^2)}##
of course you may chip in with your insight/cheers. ..will look at rest later...
1. Unit tangent
##r=xi+yj+zk##
##r=(t-\dfrac{t^3}{3})i+t^2j+(t+\dfrac{t^3}{3})k##
##T=\dfrac{dr}{dt} ⋅\dfrac{dt}{ds}##
##\dfrac{dr}{dt}=(1-t^2)i+2tj+(1+t^2)k##
##\dfrac{ds}{dt}=\sqrt{(1-t^2)^2+4t^2+(1+t^2)^2}##
##=\sqrt{1-2t^2+t^4+4t^2+1+2t^2+t^4}##
##=\sqrt{2t^4+4t^2+2}##
## =\sqrt{2}(1+t^2)##
##T=\dfrac{(1-t^2)i+2tj+(1+t^2)k}{\sqrt{2} (1+t^2)}##
of course you may chip in with your insight/cheers. ..will look at rest later...
Last edited by a moderator: