- #1
chwala
Gold Member
- 2,746
- 387
- Homework Statement
- See attached below;
- Relevant Equations
- sum/product
For part a,
We have ##α+β=b## and ##αβ =c##. It follows that,
##(α^2 + 1)(β^2+1)=α^2β^2+α^2+β^2+1)##
=##α^2β^2+(α+β)^2-2αβ +1##
=##c^2+b^2-2c+1##
=##c^2-2c+1+b^2##
=##(c-1)^2+b^2##
For part b,..we shall have
##x^2- \dfrac{α+β+α^2β +αβ^2}{(α^2 + 1)(β^2+1)}## ##x## +##\dfrac {αβ}{(α^2 + 1)(β^2+1)}##
##x^2-\dfrac{α+β+αβ(β +α)}{(α^2 + 1)(β^2+1)}####x##+##\dfrac {αβ}{(α^2 + 1)(β^2+1)}##
##x^2-\dfrac{b(1+c)}{(c-1)^2+b^2}####x##+##\dfrac {c}{(c-1)^2+b^2}##
Is this correct?( i do not have the solutions)...i would appreciate different ways of attempting the problem. Cheers.