- #1
chwala
Gold Member
- 2,753
- 388
- Homework Statement
- This is my own question- i am currently reading on ellipses and hyperbolas..
##\dfrac{x^2}{4}-\dfrac{y^2}{9}=1##
##\dfrac{y^2}{4}-\dfrac{x^2}{9}=1##
- Relevant Equations
- Simultaneous equations
My approach on this;
##\dfrac{x^2}{4}-\dfrac{y^2}{9}=\dfrac{y^2}{4}-\dfrac{x^2}{9}##
##9x^2-4y^2=9y^2-4x^2##
##13x^2-13y^2=0##
##x^2=y^2##
Therefore, on substituting back into equation we shall have;
##\dfrac{x^2}{4}-\dfrac{x^2}{9}=1##
##9x^2-4x^2=36##
##5x^2=36##
##x^2=7.2##
##x=\sqrt{7.2}=±2.68## to 3 significant figures.
therefore our solutions are; ##(x,y)= (2.68, 2.68), (2.68,-2.68), (-2.68, -2.68), (-2.68,2.68).##
I would appreciate any other approach other than this...
##\dfrac{x^2}{4}-\dfrac{y^2}{9}=\dfrac{y^2}{4}-\dfrac{x^2}{9}##
##9x^2-4y^2=9y^2-4x^2##
##13x^2-13y^2=0##
##x^2=y^2##
Therefore, on substituting back into equation we shall have;
##\dfrac{x^2}{4}-\dfrac{x^2}{9}=1##
##9x^2-4x^2=36##
##5x^2=36##
##x^2=7.2##
##x=\sqrt{7.2}=±2.68## to 3 significant figures.
therefore our solutions are; ##(x,y)= (2.68, 2.68), (2.68,-2.68), (-2.68, -2.68), (-2.68,2.68).##
I would appreciate any other approach other than this...