- #1
chwala
Gold Member
- 2,753
- 388
- Homework Statement
- Solve for ##x## in exact form given;
##\sinh^{-1}x = 2\cosh^{-1} 2##
- Relevant Equations
- hyperbolic trig equation
I was able to solve with a rather longer way; there could be a more straightforward approach;
My steps are along these lines;
##\sinh^{-1} x = 2 \ln (2+ \sqrt{3})##
##\sinh^{-1} x = \ln (7+ 4\sqrt{3})##
##x = \sinh[ \ln (7+ 4\sqrt{3})]##
##x = \dfrac {e^{\ln (7+ 4 \sqrt{3})} - e^{-[\ln 7+ 4 \sqrt{3}]}} {2}##
##x = \dfrac{(7+ 4 \sqrt{3})^2 -1}{\ 7+ 4 \sqrt{3}} \div 2##
##x = \dfrac{49+28\sqrt{3} + 28\sqrt{3} +48-1}{2(7+4\sqrt{3})}##
##x = \dfrac{672-384\sqrt{3}+392\sqrt{3} -672}{2(7+4\sqrt{3})}=\dfrac{8\sqrt{3}}{2}##
##x=4\sqrt{3}##
My steps are along these lines;
##\sinh^{-1} x = 2 \ln (2+ \sqrt{3})##
##\sinh^{-1} x = \ln (7+ 4\sqrt{3})##
##x = \sinh[ \ln (7+ 4\sqrt{3})]##
##x = \dfrac {e^{\ln (7+ 4 \sqrt{3})} - e^{-[\ln 7+ 4 \sqrt{3}]}} {2}##
##x = \dfrac{(7+ 4 \sqrt{3})^2 -1}{\ 7+ 4 \sqrt{3}} \div 2##
##x = \dfrac{49+28\sqrt{3} + 28\sqrt{3} +48-1}{2(7+4\sqrt{3})}##
##x = \dfrac{672-384\sqrt{3}+392\sqrt{3} -672}{2(7+4\sqrt{3})}=\dfrac{8\sqrt{3}}{2}##
##x=4\sqrt{3}##
Last edited by a moderator: