- #1
chwala
Gold Member
- 2,746
- 387
- Homework Statement
- If ##x=\sec θ + \tan θ##, then show that ##\dfrac {1}{x}=\sec θ - \tan θ##
- Relevant Equations
- Trigonometry
My take;
##x^2=\dfrac{(1+\sin θ)^2}{cos^2θ}=\dfrac{(1+\sin θ)^2}{1-\sin ^2θ}=\dfrac{1+\sin θ}{1-\sin θ}##
we know that, ##x=\dfrac{1+\sin θ}{\cos θ}##
##⇒1+\sin θ=x\cos θ##
therefore,
##x^2=\dfrac{x\cos θ}{1-\sin θ}##
##\dfrac{x}{x^2}=\dfrac{1-\sin θ}{\cos θ}##
##\dfrac{1}{x}=\dfrac{1}{\cos θ}-\dfrac{\sin θ}{\cos θ}=\sec θ-\tan θ##
there may be another approach to this problem. Your input highly appreciated...
##x^2=\dfrac{(1+\sin θ)^2}{cos^2θ}=\dfrac{(1+\sin θ)^2}{1-\sin ^2θ}=\dfrac{1+\sin θ}{1-\sin θ}##
we know that, ##x=\dfrac{1+\sin θ}{\cos θ}##
##⇒1+\sin θ=x\cos θ##
therefore,
##x^2=\dfrac{x\cos θ}{1-\sin θ}##
##\dfrac{x}{x^2}=\dfrac{1-\sin θ}{\cos θ}##
##\dfrac{1}{x}=\dfrac{1}{\cos θ}-\dfrac{\sin θ}{\cos θ}=\sec θ-\tan θ##
there may be another approach to this problem. Your input highly appreciated...