- #1
chwala
Gold Member
- 2,746
- 387
- Homework Statement
- Simplify ##r(r+1)-(r-1)r## and use your result to obtain ## \sum_{r=1}^n r##
- Relevant Equations
- Method of difference
##r^2+r-r^2+r=2r##
Let ##f(r)=(r-1)r## then it follows that ##f(r+1)=r(r+1)## so that ##2r## is of the form ##f(r+1)-f(r)##.
When
##r=1;## ##[2×1]=2-0##
##r=2;## ##[2×2]=6-2##
##r=3;## ##[2×3]=12-6##
##r=4;## ##[2×4]=20-12##
...
##r=n-1##, We shall have ##2(n-1)=n-1(n)-(n-2)(n-1)##
##r=n##, We shall have ##2n=n(n+1)-(n-1)n## ## 2\sum_{r=1}^n r=n(n+1)-0##
## 2\sum_{r=1}^n r=n^2+n##
## \sum_{r=1}^n r=\dfrac{1}{2} \left[n^2+n\right]##
your insight is welcome...