- #1
chwala
Gold Member
- 2,752
- 387
- Homework Statement
- Given that; $$y=\frac {1+3x^2}{(1+x)^2(1-x)}$$
i. express ##y## in partial fractions.
ii. expand ##y## as a series in ascending powers of ##x##, giving the first three terms.
- Relevant Equations
- partial fractions and binomial theorem
Let $$y=\frac {1+3x^2}{(1+x)^2(1-x)}= \frac {A}{1-x}+\frac {B}{1+x}+\frac {C}{(1+x)^2}$$
$$⇒1+3x^2=A(1+x)^2+B(1-x^2)+C(1-x)$$
$$⇒A-B=3$$
$$2A-C=0$$
$$A+B+C=1$$
On solving the simultaneous equations, we get ##A=1##, ##B=-2## and ##C=2##
therefore we shall have,
$$y=\frac {1}{1-x}+\frac {-2}{1+x}+\frac {2}{(1+x)^2}$$
$$y=2(1+x)^{-2} +(1-x)^{-1} -2(1+x)^{-1}$$
Now on using binomial theorem we shall get;
$$y=2(1-2x+3x^2+...)+(1+x+x^2+...)+ -2(1-x+x^2+...)$$
$$y=(6x^2-4x+2...)+(x^2+x+1+...)+(-2x^2+2x-2+...)$$
$$y=1-x+5x^2+...$$ Bingo, any other variation would be appreciated guys!
$$⇒1+3x^2=A(1+x)^2+B(1-x^2)+C(1-x)$$
$$⇒A-B=3$$
$$2A-C=0$$
$$A+B+C=1$$
On solving the simultaneous equations, we get ##A=1##, ##B=-2## and ##C=2##
therefore we shall have,
$$y=\frac {1}{1-x}+\frac {-2}{1+x}+\frac {2}{(1+x)^2}$$
$$y=2(1+x)^{-2} +(1-x)^{-1} -2(1+x)^{-1}$$
Now on using binomial theorem we shall get;
$$y=2(1-2x+3x^2+...)+(1+x+x^2+...)+ -2(1-x+x^2+...)$$
$$y=(6x^2-4x+2...)+(x^2+x+1+...)+(-2x^2+2x-2+...)$$
$$y=1-x+5x^2+...$$ Bingo, any other variation would be appreciated guys!
Last edited: