- #1
chwala
Gold Member
- 2,753
- 388
- Homework Statement
- If ##log_a n=x## and ##log_c n=y##, where ##n≠1##, prove that, $$\frac {x-y}{x+y}=\frac {log_b c-log_b a}{log_b c+log_ba}$$
- Relevant Equations
- understanding of logs
In my approach, i made use of change of base; i.e
$$x-y=\frac {log_b n}{log_b a} -\frac {log_b n}{log_b c}$$
$$x-y=\frac {log_b c ⋅log_b n - log_b n ⋅logba}{log_b a ⋅log_bc}$$
and
$$x+y=\frac {log_b n}{log_b a} +\frac {log_b n}{log_b c}$$
$$x-y=\frac {log_b c ⋅log_b n + log_b n ⋅logba}{log_b a ⋅log_bc}$$
$$→\frac {x-y}{x+y}=\frac {log_b n}{log_b n}⋅ \frac {log_b c - logba}{log_b c +log_b a}$$
$$=\frac {log_b c - logba}{log_b c +log_b a}$$
Any other way of looking at it...
$$x-y=\frac {log_b n}{log_b a} -\frac {log_b n}{log_b c}$$
$$x-y=\frac {log_b c ⋅log_b n - log_b n ⋅logba}{log_b a ⋅log_bc}$$
and
$$x+y=\frac {log_b n}{log_b a} +\frac {log_b n}{log_b c}$$
$$x-y=\frac {log_b c ⋅log_b n + log_b n ⋅logba}{log_b a ⋅log_bc}$$
$$→\frac {x-y}{x+y}=\frac {log_b n}{log_b n}⋅ \frac {log_b c - logba}{log_b c +log_b a}$$
$$=\frac {log_b c - logba}{log_b c +log_b a}$$
Any other way of looking at it...
Last edited: