- #1
Math100
- 796
- 221
- Homework Statement
- Solve the simultaneous linear congruences ## 3x\equiv 2\pmod {5}, 3x\equiv 4\pmod {7}, 3x\equiv 6\pmod {11} ##.
- Relevant Equations
- Let ## p, q ## be coprime. Then the system of equations ## x\equiv a\pmod {p}, x\equiv b\pmod {q}## has a unique solution for ## x ## modulo ## pq ##.
Consider the following set of simultaneous linear congruences:
## 3x\equiv 2\pmod {5}, 3x\equiv 4\pmod {7}, 3x\equiv 6\pmod {11} ##.
Observe that
\begin{align*}
&3x\equiv 2\pmod {5}\implies 6x\equiv 4\pmod {5}\implies x\equiv 4\pmod {5}\\
&3x\equiv 4\pmod {7}\implies 15x\equiv 20\pmod {7}\implies x\equiv 6\pmod {7}\\
&3x\equiv 6\pmod {11}\implies 12x\equiv 24\pmod {11}\implies x\equiv 2\pmod {11}.\\
\end{align*}
Applying the Chinese Remainder Theorem produces:
## n=5\cdot 7\cdot 11=385 ##.
Now we define ## N_{k}=\frac{n}{n_{k}} ## for ## k=1,2,...,r ##.
Note that ## N_{1}=\frac{385}{5}=77, N_{2}=\frac{385}{7}=55 ## and ## N_{3}=\frac{385}{11}=35 ##.
Then ## 77x_{1}\equiv 1\pmod {5}, 55x_{2}\equiv 1\pmod {7} ## and ## 35x_{3}\equiv 1\pmod {11} ##.
This implies ## x_{1}=3, x_{2}=6 ## and ## x_{3}=6 ##.
Thus ## x\equiv (4\cdot 77\cdot 3+6\cdot 55\cdot 6+2\cdot 35\cdot 6)\pmod {385}\equiv 3324\pmod {385}\equiv 244\pmod {385} ##.
Therefore, ## x\equiv 244\pmod {385} ##.
## 3x\equiv 2\pmod {5}, 3x\equiv 4\pmod {7}, 3x\equiv 6\pmod {11} ##.
Observe that
\begin{align*}
&3x\equiv 2\pmod {5}\implies 6x\equiv 4\pmod {5}\implies x\equiv 4\pmod {5}\\
&3x\equiv 4\pmod {7}\implies 15x\equiv 20\pmod {7}\implies x\equiv 6\pmod {7}\\
&3x\equiv 6\pmod {11}\implies 12x\equiv 24\pmod {11}\implies x\equiv 2\pmod {11}.\\
\end{align*}
Applying the Chinese Remainder Theorem produces:
## n=5\cdot 7\cdot 11=385 ##.
Now we define ## N_{k}=\frac{n}{n_{k}} ## for ## k=1,2,...,r ##.
Note that ## N_{1}=\frac{385}{5}=77, N_{2}=\frac{385}{7}=55 ## and ## N_{3}=\frac{385}{11}=35 ##.
Then ## 77x_{1}\equiv 1\pmod {5}, 55x_{2}\equiv 1\pmod {7} ## and ## 35x_{3}\equiv 1\pmod {11} ##.
This implies ## x_{1}=3, x_{2}=6 ## and ## x_{3}=6 ##.
Thus ## x\equiv (4\cdot 77\cdot 3+6\cdot 55\cdot 6+2\cdot 35\cdot 6)\pmod {385}\equiv 3324\pmod {385}\equiv 244\pmod {385} ##.
Therefore, ## x\equiv 244\pmod {385} ##.