MHB Solve the trigonometric equation?

AI Thread Summary
The discussion revolves around solving a trigonometric equation A = cosX + AsinX and using it to find the value of i^i. Participants express confusion about how to start the problem, particularly in handling the transition from degrees to radians and applying the Euler identity. The conversation highlights the importance of checking for extraneous solutions after squaring terms in the equations. Additionally, a participant points out a potential issue with the denominator becoming zero when substituting A = i, indicating a need for careful consideration of the steps taken in the solution process. The thread emphasizes the complexities involved in solving trigonometric equations with imaginary numbers.
arroww
Messages
16
Reaction score
0
a) Solve the trigonometric equation: A = cosX + AsinX, for some angle X.

b) The imaginary number i is equal to √-1. Use part a) to solve i = cosX + isinX.

You will have used degrees to answer parts a) and b). However, the mathematics below requires the use of radians. Convert degrees to radians by multiplying the degree measurement by π/180.

You will now find a value of i^i.

This will require the euler identity e^iX = cosX + isinX, part b) and exponent arithmetic.

c) Evaluate, for one value, i^i.

----

So I honestly have no idea how to start this off haha. Could someone help out? Obviously you don't need to solve the whole thing - i just need to know how to start it off.Thanks! (:
 
Last edited:
Mathematics news on Phys.org
$a \sin(x)+b \cos(x)=c \sin(x+\varphi),$ where $c^{2}=a^{2}+b^{2}$ and $\varphi=\text{atan}2(b,a)$. That last is not a typo - it's the atan2 function, available in many programming languages. It essentially resolves the ambiguity inherent in the arctangent function.
 
arroww said:
a) Solve the trigonometric equation: A = cosX + AsinX, for some angle X.

b) The imaginary number i is equal to √-1. Use part a) to solve i = cosX + isinX.

You will have used degrees to answer parts a) and b). However, the mathematics below requires the use of radians. Convert degrees to radians by multiplying the degree measurement by π/180.

You will now find a value of i^i.

This will require the euler identity e^iX = cosX + isinX, part b) and exponent arithmetic.

c) Evaluate, for one value, i^i.

----

So I honestly have no idea how to start this off haha. Could someone help out? Obviously you don't need to solve the whole thing - i just need to know how to start it off.Thanks! (:

I would proceed like this:

$\displaystyle \begin{align*} A &= \cos{(x)} + A\sin{(x)} \\ A - A\sin{(x)} &= \cos{(x)} \\ A \left[ 1 - \sin{(x)} \right] &= \cos{(x)} \\ \left\{ A \left[ 1 - \sin{(x)} \right] \right\} ^2 &= \cos^2{(x)} \\ A^2 \left[ 1 - 2\sin{(x)} + \sin^2{(x)} \right] &= 1 - \sin^2{(x)} \\ A - 2A\sin{(x)} + \sin^2{(x)} &= 1 - \sin^2{(x)} \\ 2\sin^2{(x)} - 2A\sin{(x)} &= 1 - A \\ \sin^2{(x)} - A\sin{(x)} &= \frac{1 - A}{2} \\ \sin^2{(x)} - A\sin{(x)} + \left( -\frac{A}{2} \right) ^2 &= \frac{1 - A}{2} + \left( -\frac{A}{2} \right) ^2 \\ \left[ \sin{(x)} - \frac{A}{2} \right] ^2 &= \frac{A^2 - 2A + 2}{4} \\ \sin{(x)} - \frac{A}{2} &= \pm \frac{\sqrt{ A^2 - 2A + 2}}{2} \\ \sin{(x)} &= \frac{A \pm \sqrt{A^2 - 2A + 2}}{2} \\ x &= \arcsin{ \left( \frac{A \pm \sqrt{A^2 - 2A + 2}}{2} \right) } \end{align*}$

as well as all other quadrant solutions and all other possibilities when the period of $\displaystyle \begin{align*} 2\pi \end{align*}$ is added or subtracted.

Just remember that not all solutions might be valid, as squaring to solve an equation might bring in extraneous solutions. You need to check which are possible.
 
For a), my solution starts like Prove It's, but then diverges from it.
$$A = \cos x + A\sin x,$$ $$A(1-\sin x) = \cos x,$$ $$A^2(1-\sin x)^2 = \cos^2x = 1 - \sin^2x = (1-\sin x)(1+\sin x),$$ $$A^2(1-\sin x) = 1+\sin x,\quad(*)$$ $$(A^2+1)\sin x = A^2-1,$$ $$\sin x = \frac{A^2-1}{A^2+1},$$ $$x = \arcsin\Bigl(\frac{A^2-1}{A^2+1}\Bigr)\quad(**).$$

For b), the obvious thing to do is to put $A=i$ in a). But then we hit a serious roadblock, because if $A=i$ then $A^2 = -1$ and $A^2+1=0.$ So the denominator of the fraction in (**) is zero. What has gone wrong here?? To see what to do about this, notice that to get (*) from the previous line, I canceled a factor $(1-\sin x)$ from both sides of the equation. When might that step not be justified?
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top