- #1
chwala
Gold Member
- 2,746
- 387
- Homework Statement
- see attached
- Relevant Equations
- understanding of continous and discrete distribution
I am refreshing on this; ..after a long time...
Note that i do not have the solution to this problem.
I will start with part (a).
##f(u)= 3u-\dfrac{3u^2}{2k}## with limits ##0≤u≤k##
it follows that,
##3k - \dfrac{3k}{2}=1##
##\dfrac{3k}{2}=1##
##k=\dfrac {2}{3}##
For part (b),
##E(T)=\int_0^{\frac{2}{3}} u⋅(3-\dfrac{9}{2}u )du=\left[\dfrac{3}{2}×\dfrac{4}{9}-\dfrac{3}{2}×\dfrac{8}{27}\right]=\dfrac{6-4}{9}= \dfrac{2}{9}##Ok let me know if that's correct...
Note that i do not have the solution to this problem.
##f(u)= 3u-\dfrac{3u^2}{2k}## with limits ##0≤u≤k##
it follows that,
##3k - \dfrac{3k}{2}=1##
##\dfrac{3k}{2}=1##
##k=\dfrac {2}{3}##
For part (b),
##E(T)=\int_0^{\frac{2}{3}} u⋅(3-\dfrac{9}{2}u )du=\left[\dfrac{3}{2}×\dfrac{4}{9}-\dfrac{3}{2}×\dfrac{8}{27}\right]=\dfrac{6-4}{9}= \dfrac{2}{9}##Ok let me know if that's correct...
Last edited: