Solve this problem that involves the factor theorem

  • Thread starter chwala
  • Start date
  • Tags
    Theorem
You're welcome.I'm always glad to help.In summary, the conversation discusses various approaches to prove that kp=8 if 4x^3+kx^2+px+2 is divisible by x^2+λ^2, including factoring and setting the real and imaginary parts equal to 0. Ultimately, it is shown that kp=8 through multiple methods, including solving the simultaneous equations -4λ^3+p=0 and -kλ^2+2=0.
  • #1
chwala
Gold Member
2,755
388
Homework Statement
If ##4x^3+kx^2+px+2## is divisible by ##x^2+λ^2##. Prove that ##kp=8##
Relevant Equations
Factor theorem
My attempt;
##4x^3+kx^2+px+2=(x^2+λ^2)(4x+b)##
##4x^3+kx^2+px+2=4x^3+bx^2+4λ^2x+bλ^2##
##⇒k=b, p=4λ^2 , bλ^2=2##

##\dfrac{4λ^2}{bλ^2}=\dfrac{p}{2}##
##\dfrac{4}{b}=\dfrac{p}{2}##
##⇒8=pb## but ##b=k##
##⇒8=kp##

Any other approach appreciated...
 
Physics news on Phys.org
  • #2
1. Same approach, but don't divide. Write kp = , and then plug in the formulas you derived for k and p. Otherwise you have to prove that you didn't divide by 0.
2. Different approach. Plug in iλ. Set the real and imaginary parts equal to 0.
 
  • Like
Likes chwala
  • #3
chwala said:
Homework Statement:: If ##4x^3+kx^2+px+2## is divisible by ##x^2+λ^2##. Prove that ##kp=8##
Relevant Equations:: Factor theorem

My attempt;
##4x^3+kx^2+px+2=(x^2+λ^2)(4x+b)##
##4x^3+kx^2+px+2=4x^3+bx^2+4λ^2x+bλ^2##
##⇒k=b, p=4λ^2 , bλ^2=2##

##\dfrac{4λ^2}{bλ^2}=\dfrac{p}{2}##
##\dfrac{4}{b}=\dfrac{p}{2}##
##⇒8=pb## but ##b=k##
##⇒8=kp##

Any other approach appreciated...
Slightly different approach and maybe a bit cleaner: Since you've determined that ##k=b, p=4λ^2## , and ##bλ^2=2##, then ##b = \frac 2 {\lambda^2}##, so ##kp = b \cdot 4 \lambda^2 = \frac 2 {\lambda^2} \cdot 4\lambda^2 = 8##.

Prof B said:
1. Same approach, but don't divide.
@chwala didn't do any division. Since ##4x^3+kx^2+px+2## is divisible by ##x^2+λ^2##, then ##4x^3+kx^2+px+2## is equal to the product of ##x^2 + \lambda^2## and a linear polynomial whose x term has a coefficient of 4. That is, ##4x + b##.
 
  • Like
Likes chwala
  • #4
You divided 4λ2 by bλ2
 
  • #5
Prof B said:
1. Same approach, but don't divide. Write kp = , and then plug in the formulas you derived for k and p. Otherwise you have to prove that you didn't divide by 0.
2. Different approach. Plug in iλ. Set the real and imaginary parts equal to 0.
Different approach. Plug in iλ. Set the real and imaginary parts equal to 0. I do not seem to get this part where you're talking of complex numbers. Kindly be clear on this part.
 
  • #6
chwala said:
Different approach. Plug in iλ. Set the real and imaginary parts equal to 0. I do not seem to get this part where you're talking of complex numbers. Kindly be clear on this part.
It goes like this.

Factor the sum of squares. ## ~~ x^2 + \lambda^2 = (x+i\lambda)(x-i\lambda)~.~~## Right?

So ##~(x-i\lambda) ~ ## is a factor of ##f(x)=4x^3+kx^2+px+2##.

What does the factor theorem say? - - - in part: If ##x-a## is a factor of polynomial ##P(x)##, then ##P(a)=0##.

So in your case, plug ##i\lambda## into ##f(x)## and set that equal to zero. Since you get a complex result, both the real part is zero and the imaginary part is zero, just as @Prof B said.
 
  • #7
SammyS said:
It goes like this.

Factor the sum of squares. ## ~~ x^2 + \lambda^2 = (x+i\lambda)(x-i\lambda)~.~~## Right?

So ##~(x-i\lambda) ~ ## is a factor of ##f(x)=4x^3+kx^2+px+2##.

What does the factor theorem say? - - - in part: If ##x-a## is a factor of polynomial ##P(x)##, then ##P(a)=0##.

So in your case, plug ##i\lambda## into ##f(x)## and set that equal to zero. Since you get a complex result, both the real part is zero and the imaginary part is zero, just as @Prof B said.
Does it make any difference? Any justification for this step?
When you expand ## ~~ (x+i\lambda)(x-i\lambda)~~~= ~~ x^2 + \lambda^2## you will end up with the original factor ##x^2+λ^2##, which i simply used directly to work to solution. Is there a need or rather any advantage to factorize so as to help realize the envisaged solution?

Ok for the sake of the argument, let me go with you here;
If ##(x-iλ)## is a factor of the polynomial ##f(x)## then it follows that;
##0+0i=4λ^3i-kλ^2+pλi+2##
How will you solve the simultaneous equation;
##4λ^3+p=0##
##kλ^2+2=0##
 
Last edited:
  • #8
chwala said:
Does it make any difference? Any justification for this step?
When you expand ## ~~ (x+i\lambda)(x-i\lambda)~~~= ~~ x^2 + \lambda^2## you will end up with the original factor ##x^2+λ^2##, which i simply used directly to work to solution. Is there a need or rather any advantage to factorize so as to help realize the envisaged solution?

Ok for the sake of the argument, let me go with you here;
If ##(x-iλ)## is a factor of the polynomial ##f(x)## then it follows that;
##0+0i=4λ^3i-kλ^2+pλi+2##
How will you solve the simultaneous equation;
##4λ^3+p=0##
##kλ^2+2=0##
To be fair, @Prof B merely said that this is a different approach. - So it might not be better. To see if you like it, you need to try it. I'm glad to see you do that. Now, on to your attempt.

You left a ##\lambda## out of one of those equations as well as a negative sign. By the way, in LaTeX that's \lambda .

##-4\lambda^3 +p\lambda=0~~## Factoring LHS gives ##~~(-\lambda)(4\lambda^2-p)=0 ##

Clearly, ##\lambda## can't be zero, since ##f(0)\ne 0##.

So ##4\lambda^2-p=0~~## and ##~~ -k\lambda^2+2=0## .
 
  • Like
Likes chwala
  • #9
SammyS said:
To be fair, @Prof B merely said that this is a different approach. - So it might not be better. To see if you like it, you need to try it. I'm glad to see you do that. Now, on to your attempt.

You left a ##\lambda## out of one of those equations as well as a negative sign. By the way, in LaTeX that's \lambda .

##-4\lambda^3 +p\lambda=0~~## Factoring LHS gives ##~~(-\lambda)(4\lambda^2-p)=0 ##

Clearly, ##\lambda## can't be zero, since ##f(0)\ne 0##.

So ##4\lambda^2-p=0~~## and ##~~ -k\lambda^2+2=0## .
Ok, i can see that you end up with ##4\lambda^2=p##, therefore;
##-k\left[\dfrac {p}{4}\right] +2=0##
##-kp+8=0##
##⇒kp=8##
 
  • #10
chwala said:
Ok, i can see that you end up with ##4\lambda^2=p##, therefore;
##-k\left[\dfrac {p}{4}\right] +2=0##
##-kp+8=0##
##⇒kp=8##
Or try elimination. (Same result, of course.)

Multiply ##4\lambda^2-p=0~## by ##k## .

Multiply ##~ -k\lambda^2+2=0~## by ##4## .

Add equations:

##~~~4k\lambda^2-pk=0~##
## -4k\lambda^2+8=0~##
 
  • Like
Likes chwala
  • #11
SammyS said:
Or try elimination. (Same result, of course.)

Multiply ##4\lambda^2-p=0~## by ##k## .

Multiply ##~ -k\lambda^2+2=0~## by ##4## .

Add equations:

##~~~4k\lambda^2-pk=0~##
## -4k\lambda^2+8=0~##
@Prof B was right!...thanks @SammyS
 

FAQ: Solve this problem that involves the factor theorem

What is the factor theorem?

The factor theorem is a mathematical theorem that states that if a polynomial function has a root, then the corresponding linear factor is a factor of the polynomial. In other words, if a number is a solution to the polynomial equation, then the polynomial can be factored by dividing it by the corresponding linear factor.

How do I use the factor theorem to solve a problem?

To use the factor theorem to solve a problem, you first need to identify the polynomial function and its roots. Then, you can use long division or synthetic division to divide the polynomial by the linear factor corresponding to the root. The resulting quotient will be a polynomial with a lower degree, making it easier to solve for the remaining roots.

Can the factor theorem be used for all polynomial functions?

Yes, the factor theorem can be used for all polynomial functions. However, it is most commonly used for polynomials with real coefficients.

What is the difference between the factor theorem and the remainder theorem?

The factor theorem and the remainder theorem are closely related, but they have different purposes. The factor theorem is used to factor polynomials and find their roots, while the remainder theorem is used to find the remainder when a polynomial is divided by a linear factor.

Are there any limitations to using the factor theorem?

One limitation of the factor theorem is that it can only be used to find the roots of a polynomial if they are rational numbers. If a polynomial has irrational or complex roots, the factor theorem cannot be used. Additionally, the factor theorem only works for polynomial functions with integer coefficients.

Back
Top