- #1
chwala
Gold Member
- 2,756
- 390
- Homework Statement
- Solve the equation##sin (∅+45^0)=2 cos (∅-30^0)##
giving all solutions in the interval ##0^0< ∅<180^0##
- Relevant Equations
- Trigonometric identities
Find the Mark scheme solution here;
Now find my approach;
Using the trig. identities It follows that,
##\frac {1}{\sqrt 2}##⋅ ##sin ∅##+##\frac {1}{\sqrt 2}##⋅ ##cos ∅##=##{\sqrt 3}##⋅ ##cos ∅##+##sin ∅##
→##sin ∅##[##\frac {1}{\sqrt 2}##-##1]##=##cos ∅##[##\frac {-1}{\sqrt 2}##+##{\sqrt 3}##]
→##sin ∅##⋅[##\frac {1-{\sqrt 2}}{\sqrt 2}]##=##cos ∅##⋅[##\frac {\sqrt 6 -1}{\sqrt 2}]##
→##tan ∅##=##[\frac {\sqrt 6 -1}{1-{\sqrt 2}}]##
## ∅##=##-74.051^0##, but we want our solutions to be in the domain, ##0^0< ∅<180^0##,
therefore, ## ∅##=##-74.051^0 + 180^0##=##105.9^0##
I would definitely be interested in another approach...
Now find my approach;
Using the trig. identities It follows that,
##\frac {1}{\sqrt 2}##⋅ ##sin ∅##+##\frac {1}{\sqrt 2}##⋅ ##cos ∅##=##{\sqrt 3}##⋅ ##cos ∅##+##sin ∅##
→##sin ∅##[##\frac {1}{\sqrt 2}##-##1]##=##cos ∅##[##\frac {-1}{\sqrt 2}##+##{\sqrt 3}##]
→##sin ∅##⋅[##\frac {1-{\sqrt 2}}{\sqrt 2}]##=##cos ∅##⋅[##\frac {\sqrt 6 -1}{\sqrt 2}]##
→##tan ∅##=##[\frac {\sqrt 6 -1}{1-{\sqrt 2}}]##
## ∅##=##-74.051^0##, but we want our solutions to be in the domain, ##0^0< ∅<180^0##,
therefore, ## ∅##=##-74.051^0 + 180^0##=##105.9^0##
I would definitely be interested in another approach...
Last edited: