- #1
karush
Gold Member
MHB
- 3,269
- 5
this is supposed to be solved with U substitution
$\displaystyle
\int \sin^6(x)\cos^3(x)
$
since \(\displaystyle \cos^3(x)\) has an odd power then
$\displaystyle
\int \sin^6(x)\left(1-\sin^2(x)\right)\cos(x) dx
$
then substitute \(\displaystyle u=\sin(x)\) and \(\displaystyle du=cos(x)dx\)
$
\int u^6 \left(1-u^2\right) du
$
so if ok so far
$\displaystyle
\int \sin^6(x)\cos^3(x)
$
since \(\displaystyle \cos^3(x)\) has an odd power then
$\displaystyle
\int \sin^6(x)\left(1-\sin^2(x)\right)\cos(x) dx
$
then substitute \(\displaystyle u=\sin(x)\) and \(\displaystyle du=cos(x)dx\)
$
\int u^6 \left(1-u^2\right) du
$
so if ok so far