- #1
- 1,753
- 143
[SOLVED] trig substitution
This is from the class notes. Evaluate the integral:
[tex]
\int_{}^{} {\frac{x}{{\sqrt {3 - x^4 } }}dx}
[/tex]
[tex]
\begin{array}{l}
u = x^2 ,\,\,du = 2x\,dx\,\, \Leftrightarrow \,\,dx = \frac{{du}}{{2x}} \\
\\
\int_{}^{} {\frac{{x^1 }}{{\sqrt {3 - x^4 } }}dx} = \int_{}^{} {\frac{x}{{2x\sqrt {3 - u^2 } }}du} = \int_{}^{} {\frac{1}{{2\sqrt {3 - u^2 } }}du } \\
\end{array}
[/tex]
The next step I would want to do using trig substitution is
[tex]
\begin{array}{l}
a = \sqrt 3 ,\,x = a\sin \theta = \sqrt 3 \sin \theta \\
\\
\frac{1}{2}\int_{}^{} {\frac{1}{{\sqrt {\sqrt 3 ^2 - \sqrt 3 \sin \theta } }}du} = \frac{1}{2}\int_{}^{} {\frac{1}{{\sqrt {3 - \sqrt 3 \sin \theta } }}du} \\
\end{array}
[/tex]
But the next step in the example is:
[tex]
\int_{}^{} {\frac{1}{{2\sqrt {3 - u^2 } }}du = } \frac{1}{2}\sin ^{ - 1} \frac{u}{{\sqrt 3 }} + C
[/tex]
How did he get this? Thanks!
This is from the class notes. Evaluate the integral:
[tex]
\int_{}^{} {\frac{x}{{\sqrt {3 - x^4 } }}dx}
[/tex]
[tex]
\begin{array}{l}
u = x^2 ,\,\,du = 2x\,dx\,\, \Leftrightarrow \,\,dx = \frac{{du}}{{2x}} \\
\\
\int_{}^{} {\frac{{x^1 }}{{\sqrt {3 - x^4 } }}dx} = \int_{}^{} {\frac{x}{{2x\sqrt {3 - u^2 } }}du} = \int_{}^{} {\frac{1}{{2\sqrt {3 - u^2 } }}du } \\
\end{array}
[/tex]
The next step I would want to do using trig substitution is
[tex]
\begin{array}{l}
a = \sqrt 3 ,\,x = a\sin \theta = \sqrt 3 \sin \theta \\
\\
\frac{1}{2}\int_{}^{} {\frac{1}{{\sqrt {\sqrt 3 ^2 - \sqrt 3 \sin \theta } }}du} = \frac{1}{2}\int_{}^{} {\frac{1}{{\sqrt {3 - \sqrt 3 \sin \theta } }}du} \\
\end{array}
[/tex]
But the next step in the example is:
[tex]
\int_{}^{} {\frac{1}{{2\sqrt {3 - u^2 } }}du = } \frac{1}{2}\sin ^{ - 1} \frac{u}{{\sqrt 3 }} + C
[/tex]
How did he get this? Thanks!