MHB Solve twice differentiable function

i_a_n
Messages
78
Reaction score
0
Let $u:\mathbb{R}^n\rightarrow \mathbb{R}$ be a twice differentiable function. The 2-dimensional wave equation is
$\frac{\partial ^2u}{\partial x^2}=\frac{\partial ^2u}{\partial t^2}$, where $(x,t)$ are coordinates on $\mathbb{R}^2$. Prove that if $f,g:\mathbb{R}\rightarrow \mathbb{R}$ are twice di erentiable functions, then $u(x,t) = f(x-t) + g(x+t)$ solves the 2-dimensional wave equation. Use this fact, or another, to solve the Boundary-Value problem where
$u(s,0) = sin(s) + cos(s)$ , $u(0,s) = -sin(s) + cos(s)$ , $\forall s\in \mathbb{R}$.
 
Physics news on Phys.org
Our helpers will really have no idea where you need help when you simply post a problem with no work shown.

I have messaged you about this, and reminded you in a previous topic that our helpers are not here to do the problems, but rather to help you do the problem, and when you do not indicate what you have tried, they really cannot effectively help.

Even if you state that you have no idea even how to begin the problem, this at least let's us know something and gives the helpers a place to begin.

Can you post your work so our helpers have somewhere to begin?
 
I posted this question on math-stackexchange but apparently I asked something stupid and I was downvoted. I still don't have an answer to my question so I hope someone in here can help me or at least explain me why I am asking something stupid. I started studying Complex Analysis and came upon the following theorem which is a direct consequence of the Cauchy-Goursat theorem: Let ##f:D\to\mathbb{C}## be an anlytic function over a simply connected region ##D##. If ##a## and ##z## are part of...
Back
Top