- #1
NeoDevin
- 334
- 2
[SOLVED] Griffiths Quantum 4.58
From Griffiths, Intoduction to Quantum Mechanics, 2nd Ed, p198
Deduce the condition for minimum uncertainty in [itex]S_x[/itex] and [itex]S_y[/itex] (that is, equality in the expresion [itex]\sigma_{S_x} \sigma_{S_y} \geq (\hbar/2)|\langle S_z \rangle | [/itex]), for a particle of spin 1/2 in the generic state.
Answer: With no loss of generality we can pick [itex]a[/itex] to be real; then the condition for minimum uncertainty is that [itex]b[/itex] is either pure real or else pure imaginary.
[tex]\sigma_{S_x} = \sqrt{\langle S_x^2 \rangle - \langle S_x \rangle^2}[/tex]
[tex]\sigma_{S_y} = \sqrt{\langle S_y^2 \rangle - \langle S_y \rangle^2}[/tex]
Without loss of generality, let [itex]a[/itex] be real.
We get that:
[tex]\langle S_x^2 \rangle = \frac{\hbar^2}{4}(a^2 + |b|^2)[/tex]
[tex]\langle S_x \rangle = \frac{\hbar}{2}a(b + b^*) = \hbar a Re(b)[/tex]
[tex]\langle S_x \rangle^2 = \hbar^2 a^2 Re(b)^2[/tex]
[tex]\langle S_y^2 \rangle = \frac{\hbar^2}{4}(a^2 + |b|^2)[/tex]
[tex]\langle S_y \rangle = \frac{\hbar}{2}a(b^* - b) = \hbar a Im(b)[/tex]
[tex]\langle S_y \rangle^2 = \hbar^2 a^2 Im(b)^2[/tex]
So:
[tex]\sigma_{S_x} = \hbar \sqrt{\frac{1}{4}(a^2 + |b|^2) - a^2 Re(b)^2}[/tex]
[tex]\sigma_{S_y} = \hbar \sqrt{\frac{1}{4}(a^2 + |b|^2) - a^2 Im(b)^2}[/tex]
And:
[tex]\sigma_{S_x}\sigma_{S_y} = \hbar^2 \sqrt{\frac{1}{4}(a^2 + |b|^2)(\frac{1}{4}(a^2 + |b|^2) - a^2 Re(b)^2 - a^2 Im(b)^2) + a^4 Im(b)^2 Re(b)^2 }[/tex]
For the other side of the equation we have:
[tex]\frac{\hbar}{2}|\langle S_z \rangle | = \frac{\hbar^2}{4}|a^2 - |b|^2 |[/tex]
I'm not sure how to show that you need either Re(b) or Im(b) to be zero in order for these two things to be equal.
From Griffiths, Intoduction to Quantum Mechanics, 2nd Ed, p198
Homework Statement
Deduce the condition for minimum uncertainty in [itex]S_x[/itex] and [itex]S_y[/itex] (that is, equality in the expresion [itex]\sigma_{S_x} \sigma_{S_y} \geq (\hbar/2)|\langle S_z \rangle | [/itex]), for a particle of spin 1/2 in the generic state.
Answer: With no loss of generality we can pick [itex]a[/itex] to be real; then the condition for minimum uncertainty is that [itex]b[/itex] is either pure real or else pure imaginary.
Homework Equations
[tex]\sigma_{S_x} = \sqrt{\langle S_x^2 \rangle - \langle S_x \rangle^2}[/tex]
[tex]\sigma_{S_y} = \sqrt{\langle S_y^2 \rangle - \langle S_y \rangle^2}[/tex]
The Attempt at a Solution
Without loss of generality, let [itex]a[/itex] be real.
We get that:
[tex]\langle S_x^2 \rangle = \frac{\hbar^2}{4}(a^2 + |b|^2)[/tex]
[tex]\langle S_x \rangle = \frac{\hbar}{2}a(b + b^*) = \hbar a Re(b)[/tex]
[tex]\langle S_x \rangle^2 = \hbar^2 a^2 Re(b)^2[/tex]
[tex]\langle S_y^2 \rangle = \frac{\hbar^2}{4}(a^2 + |b|^2)[/tex]
[tex]\langle S_y \rangle = \frac{\hbar}{2}a(b^* - b) = \hbar a Im(b)[/tex]
[tex]\langle S_y \rangle^2 = \hbar^2 a^2 Im(b)^2[/tex]
So:
[tex]\sigma_{S_x} = \hbar \sqrt{\frac{1}{4}(a^2 + |b|^2) - a^2 Re(b)^2}[/tex]
[tex]\sigma_{S_y} = \hbar \sqrt{\frac{1}{4}(a^2 + |b|^2) - a^2 Im(b)^2}[/tex]
And:
[tex]\sigma_{S_x}\sigma_{S_y} = \hbar^2 \sqrt{\frac{1}{4}(a^2 + |b|^2)(\frac{1}{4}(a^2 + |b|^2) - a^2 Re(b)^2 - a^2 Im(b)^2) + a^4 Im(b)^2 Re(b)^2 }[/tex]
For the other side of the equation we have:
[tex]\frac{\hbar}{2}|\langle S_z \rangle | = \frac{\hbar^2}{4}|a^2 - |b|^2 |[/tex]
I'm not sure how to show that you need either Re(b) or Im(b) to be zero in order for these two things to be equal.