- #1
nunos
- 7
- 0
Find k:
[tex]20\frac{d^2x}{dt^2} + \frac{dx}{dt} + kx = 0[/tex]
when t = 0
- x = 1
- dx/dt = 1
My attempt at this in maxima:
What am I doing wrong or what am I not doing? Help is very appreciated.
Thanks.
[tex]20\frac{d^2x}{dt^2} + \frac{dx}{dt} + kx = 0[/tex]
when t = 0
- x = 1
- dx/dt = 1
My attempt at this in maxima:
Code:
(%i1) 20*'diff( 'diff(x, t), t) + 'diff(x, t) + k*x = 0;
2
d x dx
(%o1) 20 --- + -- + k x = 0
2 dt
dt
(%i2) ode2(%, x, t);
Is 80 k - 1 positive, negative, or zero?
positive;
k 1 k 1
sqrt(- - ---) t sqrt(- - ---) t
- t/40 5 400 5 400
(%o2) x = %e (%k1 sin(---------------) + %k2 cos(---------------))
2 2
(%i3) ic2(%, x=1, t=0, 'diff(x,t) = 1);
k 1
sqrt(- - ---) t
- t/40 5 400
(%o3) x = %e (cos(---------------)
2
k 1 k 1
sqrt(- - ---) t sqrt(- - ---) t
5 400 k 1 5 400
- (sin(---------------) (20 sqrt(- - ---) sin(---------------)
2 5 400 2
k 1 k 1
sqrt(- - ---) t sqrt(- - ---) t
5 400 t/40 5 400
+ cos(---------------) + 40 %e ))/(sin(---------------)
2 2
k 1
sqrt(- - ---) t
k 1 5 400
- 20 sqrt(- - ---) cos(---------------)))
5 400 2
(%i4) solve(%, k);
sqrt(80 k - 1) t t/20 2
(%o4) [sin(----------------) = - (sqrt(%e x
40
t/40 sqrt(80 k - 1) t t/20
+ ((320 k - 4) %e cos(----------------) + 80 %e ) x
40
2 sqrt(80 k - 1) t t/20 t/40 t/40
+ (4 - 320 k) cos (----------------) + 1600 %e ) + %e x + 40 %e )
40
sqrt(80 k - 1) t
/(2 sqrt(80 k - 1)), sin(----------------) =
40
t/20 2 t/40 sqrt(80 k - 1) t t/20
(sqrt(%e x + ((320 k - 4) %e cos(----------------) + 80 %e ) x
40
2 sqrt(80 k - 1) t t/20 t/40 t/40
+ (4 - 320 k) cos (----------------) + 1600 %e ) - %e x - 40 %e )
40
/(2 sqrt(80 k - 1))]
What am I doing wrong or what am I not doing? Help is very appreciated.
Thanks.