- #1
mansfin
- 4
- 0
I have to find the particular solution to the differential equation:
(-21/4)y''+2y'+y=4xe^(3x)
First, I chose my trial function to be yp=(Ax+B)*e^(3x). Is this correct?
so yp'=3(Ax+B)*e^(3x)
yp''=9(Ax+B)*e^(3x)
So I plug these into the differential equation and I get:
(-189/4)Axe^(3x)-(189/4)Be^(3x)+6Axe^(3x)+6Be^(3x)+Axe^(3x)+Be^(3x)=4xe^(3x)
I group like terms and I get A=-16/161 and B=0
So yp=(-16/161)Axe^(3x)
This is not correct.
Can someone please tell me where I'm going wrong? Thanks!
(-21/4)y''+2y'+y=4xe^(3x)
First, I chose my trial function to be yp=(Ax+B)*e^(3x). Is this correct?
so yp'=3(Ax+B)*e^(3x)
yp''=9(Ax+B)*e^(3x)
So I plug these into the differential equation and I get:
(-189/4)Axe^(3x)-(189/4)Be^(3x)+6Axe^(3x)+6Be^(3x)+Axe^(3x)+Be^(3x)=4xe^(3x)
I group like terms and I get A=-16/161 and B=0
So yp=(-16/161)Axe^(3x)
This is not correct.
Can someone please tell me where I'm going wrong? Thanks!