- #1
Saitama
- 4,243
- 93
Problem:
Solve the differential equation:
$$\left(\frac{1}{x}-\frac{y^2}{(x-y)^2}\right)\,dx+\left(\frac{x^2}{(x-y)^2}-\frac{1}{y}\right)\,dy=0$$
Attempt:
Let
$$M=\left(\frac{1}{x}-\frac{y^2}{(x-y)^2}\right)$$
and
$$N=\left(\frac{x^2}{(x-y)^2}-\frac{1}{y}\right)$$
I noticed that
$$\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$$
Hence, the given D.E is an exact D.E. Thus the solution of the D.E is:
$$y=\int M (\text{y constant}) \,dx+\int N (\text{terms independent of x})\,dy$$
The first integral is:
$$\int M\,dx=\ln x+\frac{y^2}{x-y}$$
The second integral is:
$$\int N\,dy=\int \frac{-1}{y} \,dy=-\ln y$$
Hence, the solution is:
$$y=\ln \frac{x}{y}+\frac{y^2}{x-y}+C$$
But this is incorrect.
Any help is appreciated. Thanks!
Solve the differential equation:
$$\left(\frac{1}{x}-\frac{y^2}{(x-y)^2}\right)\,dx+\left(\frac{x^2}{(x-y)^2}-\frac{1}{y}\right)\,dy=0$$
Attempt:
Let
$$M=\left(\frac{1}{x}-\frac{y^2}{(x-y)^2}\right)$$
and
$$N=\left(\frac{x^2}{(x-y)^2}-\frac{1}{y}\right)$$
I noticed that
$$\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$$
Hence, the given D.E is an exact D.E. Thus the solution of the D.E is:
$$y=\int M (\text{y constant}) \,dx+\int N (\text{terms independent of x})\,dy$$
The first integral is:
$$\int M\,dx=\ln x+\frac{y^2}{x-y}$$
The second integral is:
$$\int N\,dy=\int \frac{-1}{y} \,dy=-\ln y$$
Hence, the solution is:
$$y=\ln \frac{x}{y}+\frac{y^2}{x-y}+C$$
But this is incorrect.
Any help is appreciated. Thanks!