- #1
askor
- 169
- 9
Can someone please tell me how to solve a limit problem like this?
$$\lim_{x \to \infty} \frac{4}{\sqrt{x^2 + x} - \sqrt{x^2 - 3x}}$$
This is my attempt to solve the problem:
$$\lim_{x \to \infty} \frac{4}{\sqrt{x^2 + x} - \sqrt{x^2 - 3x}}$$
$$= \lim_{x \to \infty} \frac{4}{\sqrt{x^2 + x} - \sqrt{x^2 - 3x}} × \frac{\sqrt{x^2 + x} + \sqrt{x^2 - 3x}}{\sqrt{x^2 + x} + \sqrt{x^2 - 3x}}$$
$$= \lim_{x \to \infty} \frac{4(\sqrt{x^2 + x} + \sqrt{x^2 - 3x})}{(x^2 + x) - (x^2 - 3x)}$$
$$= \lim_{x \to \infty} \frac{4(\sqrt{x^2 + x} + \sqrt{x^2 - 3x})}{x^2 + x - x^2 + 3x}$$
$$= \lim_{x \to \infty} \frac{4(\sqrt{x^2 + x} + \sqrt{x^2 - 3x})}{4x}$$
$$= \lim_{x \to \infty} \frac{(\sqrt{x^2 + x} + \sqrt{x^2 - 3x})}{x}$$
$$= \lim_{x \to \infty} \frac{\frac{1}{\sqrt{x^2}}(\sqrt{x^2 + x} + \sqrt{x^2 - 3x})}{\frac{1}{\sqrt{x^2}}(x)}$$
$$= \lim_{x \to \infty} \frac{\sqrt{\frac{x^2 + x}{x^2}} + \sqrt{\frac{x^2 - 3x}{x^2}}}{\frac{x}{x}}$$
$$= \lim_{x \to \infty} \frac{\sqrt{1 + \frac{1}{x}} + \sqrt{1 - \frac{3}{x}}}{1}$$
$$= \sqrt{1 + \frac{1}{\infty}} + \sqrt{1 - \frac{3}{\infty}}$$
$$= \sqrt{1 + 0} + \sqrt{1 - 0}$$
$$= \sqrt{1} + \sqrt{1}$$
$$= 1 + 1$$
$$= 2$$
Is this correct?
$$\lim_{x \to \infty} \frac{4}{\sqrt{x^2 + x} - \sqrt{x^2 - 3x}}$$
This is my attempt to solve the problem:
$$\lim_{x \to \infty} \frac{4}{\sqrt{x^2 + x} - \sqrt{x^2 - 3x}}$$
$$= \lim_{x \to \infty} \frac{4}{\sqrt{x^2 + x} - \sqrt{x^2 - 3x}} × \frac{\sqrt{x^2 + x} + \sqrt{x^2 - 3x}}{\sqrt{x^2 + x} + \sqrt{x^2 - 3x}}$$
$$= \lim_{x \to \infty} \frac{4(\sqrt{x^2 + x} + \sqrt{x^2 - 3x})}{(x^2 + x) - (x^2 - 3x)}$$
$$= \lim_{x \to \infty} \frac{4(\sqrt{x^2 + x} + \sqrt{x^2 - 3x})}{x^2 + x - x^2 + 3x}$$
$$= \lim_{x \to \infty} \frac{4(\sqrt{x^2 + x} + \sqrt{x^2 - 3x})}{4x}$$
$$= \lim_{x \to \infty} \frac{(\sqrt{x^2 + x} + \sqrt{x^2 - 3x})}{x}$$
$$= \lim_{x \to \infty} \frac{\frac{1}{\sqrt{x^2}}(\sqrt{x^2 + x} + \sqrt{x^2 - 3x})}{\frac{1}{\sqrt{x^2}}(x)}$$
$$= \lim_{x \to \infty} \frac{\sqrt{\frac{x^2 + x}{x^2}} + \sqrt{\frac{x^2 - 3x}{x^2}}}{\frac{x}{x}}$$
$$= \lim_{x \to \infty} \frac{\sqrt{1 + \frac{1}{x}} + \sqrt{1 - \frac{3}{x}}}{1}$$
$$= \sqrt{1 + \frac{1}{\infty}} + \sqrt{1 - \frac{3}{\infty}}$$
$$= \sqrt{1 + 0} + \sqrt{1 - 0}$$
$$= \sqrt{1} + \sqrt{1}$$
$$= 1 + 1$$
$$= 2$$
Is this correct?