- #1
moocav
- 6
- 0
Homework Statement
If z = cosθ + isinθ, show that zn + z-n = 2cosnθ. Hence solve the equation 3z4 - z3 + 4z2 - z + 3 = 0 for complex z.
(Hint: Reduce the given equation to an equation with the unknown cosθ)
Homework Equations
z = cosθ + isinθ
zn + z-n = 2cos(nθ)
3z4 - z3 + 4z2 - z + 3 = 0
cos2θ = 2cos2θ - 1
The Attempt at a Solution
From de Moivre's Theorem
zn = cos(nθ) + isin(nθ) AND z-n = cos(-nθ) + isin(-nθ) = cos(nθ) - isin(nθ)
Hence zn + z-n
= cos(nθ) + isin(nθ) + cos(nθ) - isin(nθ)
= 2cos(nθ)
3z4 - z3 + 4z2 - z + 3 = 0
Divide both sides by z2
3z2 - z + 4 - z-1 + 3z-2 = 0
Rearranging to
3z2 + 3z-2 - z - z-1 + 4 = 0
3(z2 + z-2) - (z + z-1) + 4 = 0
Using zn + z-n = 2cos(nθ)
3(2cos2θ) - (2cosθ) + 4 = 0
Substituting cos2θ = 2cos2θ - 1
3(2[2cos2θ - 1]) - 2cosθ + 4 = 0
Simplifies down to
6cos2θ - cosθ - 1 = 0
Solving for cosθ
(2cosθ - 1)(3cosθ + 1) = 0
Therefore cosθ = 1/2 OR cosθ = -1/3
cosθ = 1/2, θ = π/3 or 5π/3
cosθ = -1/3, θ = cos-1(-1/3)
(Note: π = funny looking pi)
Hence (using complex conjugate is also a root of polynomial)
z1 = 1/2 + sqrt(3)/2 i
z2 = 1/2 - sqrt(3)/2 i
z3 = -1/3 + sin[cos-1(-1/3)] i
z4 = -1/3 - sin[cos-1(-1/3)] i
I'm pretty confident that I've done it right until the cosθ = -1/3 and getting sin[cos-1(-1/3)] in the roots z3 and z4. So my question is have I the whole question correctly? If not can you show me how it should be done. Thanks in advance!