Solving a Problem with Interchanging Field Tensors

In summary, the result is correct, but I'm unsure about equation from 29 to 30 where right-hand side became just the covariant dual field tensor. I assumed that I could interchange the covariant dual- and normal covariant field tensor, but don't think it's possible since matrices aren't commutative. I think I bruteforced to get the correct result.
  • #1
milkism
118
15
Homework Statement
Expressing the field tensor in terms of the four dimensional Levi-Civita symbol and covariant dual field tensor.
Relevant Equations
See solution.
Exercise:
a3717a9d9e8aec33a3a9c3aa409ab2ee.png

Solution:
a9f924951e53dd98a26863c66bfe9457.png

The result is correct, but I'm unsure about equation from 29 to 30 where right-hand side became just the covariant dual field tensor. I assumed that I could interchange the covariant dual- and normal covariant field tensor, but don't think it's possible since matrices aren't commutative.
I think I bruteforced to get the correct result.:cool::headbang::angel::eynman:

P.S: definition (20) is just the definition of the four-dimensional Levi-Civita symbol.
 
Physics news on Phys.org
  • #2
You can interchange F and its dual in the conteaction. You're adding (products of) components, which commute. You don't multiply whole matrices.

Btw, you should then also worry about those implicit metric tensor "matrices" in the contraction of F with itself.
 
  • Like
Likes milkism
  • #3
haushofer said:
You can interchange F and its dual in the conteaction. You're adding (products of) components, which commute. You don't multiply whole matrices.

Btw, you should then also worry about those implicit metric tensor "matrices" in the contraction of F with itself.
Wow, thx!
 
  • Like
Likes haushofer
  • #4
Just use Appendix A.4 in

https://itp.uni-frankfurt.de/~hees/pf-faq/srt.pdf

One must be very careful concerning the sign conventions, i.e., whether you have ##\epsilon^{\mu \nu \rho \sigma}## as the usual Levi-Civita symbol and then necessarily ##\epsilon_{\mu \nu \rho \sigma}=-\epsilon^{\mu \nu \rho \sigma}## or vice versa, when using different books/papers.
 
  • Like
Likes milkism
  • #5
From
##
(29)\qquad \color{red}{\tilde{F}^{\mu \nu} \tilde{F}_{\mu \nu}} F^{\kappa \lambda}=\frac{1}{2} \epsilon^{\mu \nu \kappa \lambda} \color{blue}{F_{\kappa \lambda}} \tilde{F}_{\mu \nu} \color{blue}{F^{\kappa \lambda}}
##
which can be rewritten (using tensorial methods) as
##
(29)\qquad \color{red}{\tilde{F}^{\mu \nu} \tilde{F}_{\mu \nu}} F^{\kappa \lambda}=\frac{1}{2} \epsilon^{\mu \nu \kappa \lambda} \tilde{F}_{\mu \nu} \color{blue}{F_{\kappa \lambda}} \color{blue}{F^{\kappa \lambda}}
##inserting
##
(26)\qquad \color{red}{\tilde{F}^{\mu \nu} \tilde{F}_{\mu \nu}}=-2\left(B^2-\frac{E^2}{c^2}\right)
##

##
(25)\qquad \color{blue}{F_{\kappa \lambda} F^{\kappa \lambda}}=2\left(B^2-\frac{E^2}{c^2}\right)
##

you get

##
\color{red}{-2\left(B^2-\frac{E^2}{c^2}\right)} F^{\kappa \lambda}=\frac{1}{2} \epsilon^{\mu \nu \kappa \lambda} \tilde{F}_{\mu \nu} \ \color{blue}{2\left(B^2-\frac{E^2}{c^2}\right)}
##

##
\color{red}{-1} F^{\kappa \lambda}=\frac{1}{2} \epsilon^{\mu \nu \kappa \lambda} \tilde{F}_{\mu \nu}
##
which is equal to "minus Eq. (30)"
 
  • Like
Likes milkism
  • #6
From the first post we have equation (27):
1681846955489.png
Here, the Einstein summation notation is being used, so the ##\kappa## and ##\lambda## on the right side are dummy summation indices.

Then we read
1681846982352.png
If the Einstein convention is still being assumed, then all the indices appearing in (28) are dummy summation indices.

The next step in post #1 is
1681847117472.png

Here, we have confusion. The ##\kappa## and ##\lambda## indices appear alone on the left side. So, these indices are not being summed on the left side. Going from left to right on the right side of (29), we know that the first two ##\kappa##'s are summation indices. But, the ##\kappa## in the last factor, ##F^{\kappa \lambda}##, is not suummed since this ##\kappa## corresponds to the ##\kappa## on the left side of the equation. The same remarks can be made for the ##\lambda##'s in (29).

Note that (29) can be written with less confusion as

$$\tilde{F}^{\mu \nu} \tilde{F}_{\mu \nu} F^{\kappa \lambda}= \frac 1 2 \epsilon^{\mu \nu \alpha \beta}F_{\alpha \beta} \tilde{F}_{\mu \nu} F^{\kappa \lambda} $$

Here, it is clear that ##\mu##, ##\nu##, ##\alpha##, and ##\beta## are summation indices while the ##\kappa## and ##\lambda## are fixed indices that are not summed. However, it doesn't appear to me that this equation is very helpful in getting to the result of expressing ##F^{\mu \nu}## in terms of ##\tilde{F}_{\mu \nu}## and the Levi-Civita tensor.

A better approach is to follow @vanhees71. Start with $$\tilde{F}^{\alpha \beta} = \frac 1 2 \epsilon^{\alpha \beta \kappa \lambda}F_{\kappa \lambda} $$ Raise and lower indices to write this as $$\tilde{F}_{\alpha \beta} = \frac 1 2 \epsilon_{\alpha \beta \kappa \lambda}F^{\kappa \lambda} $$ Multiply both sides by ##\epsilon^{\mu \nu \alpha \beta}## and sum over ##\alpha## and ##\beta##. $$\epsilon^{\mu \nu \alpha \beta} \tilde{F}_{\alpha \beta} = \frac 1 2 \epsilon^{\mu \nu \alpha \beta} \epsilon_{\alpha \beta \kappa \lambda}F^{\kappa \lambda} $$ Proceed by using identities (A.4.5) and (A.3.1) in the appendices of https://itp.uni-frankfurt.de/~hees/pf-faq/srt.pdf. It is helpful to note that ##\epsilon_{\alpha \beta \kappa \lambda} = \epsilon_{ \kappa \lambda \alpha \beta}##.
 
  • Like
Likes milkism

FAQ: Solving a Problem with Interchanging Field Tensors

What is a field tensor, and why is it important in physics?

A field tensor is a mathematical object used in physics to describe fields, such as the electromagnetic field, in a concise and consistent manner. It encapsulates information about the field's strength and direction at every point in space-time. Field tensors are crucial for formulating and solving equations in relativistic theories, such as electromagnetism and general relativity, because they naturally incorporate the principles of special relativity.

What does it mean to interchange field tensors?

Interchanging field tensors typically refers to the process of transforming one field tensor into another, often through operations like taking the dual tensor or applying a symmetry transformation. This can reveal underlying symmetries of the physical system or simplify the equations governing the system's behavior.

How do you solve a problem involving interchanging field tensors?

Solving a problem involving interchanging field tensors usually involves several steps: identifying the relevant tensors, applying the appropriate mathematical operations (such as tensor algebra or calculus), and interpreting the physical meaning of the transformed tensors. This often requires a deep understanding of the underlying physical laws and the mathematical tools used to describe them.

What are the common challenges faced when working with field tensors?

Common challenges include the complexity of tensor algebra, the need for a strong grasp of differential geometry, and the intricacies of interpreting physical phenomena in the language of tensors. Additionally, ensuring that the transformations and operations preserve the physical properties of the system can be mathematically demanding.

Can you provide an example of a physical problem that involves interchanging field tensors?

An example of a physical problem involving interchanging field tensors is the analysis of electromagnetic waves in a vacuum. The electromagnetic field tensor can be transformed using the dual tensor to study the magnetic and electric field components independently. This helps in understanding how electromagnetic waves propagate and interact with matter, and is fundamental to the study of optics and quantum electrodynamics.

Similar threads

Replies
1
Views
4K
Replies
9
Views
4K
Replies
18
Views
2K
Replies
8
Views
2K
Replies
1
Views
1K
Replies
1
Views
3K
Replies
10
Views
2K
Replies
35
Views
27K
Back
Top