- #1
karush
Gold Member
MHB
- 3,269
- 5
Solve the de $$\dfrac{dy}{dx}=\dfrac{1}{7}\sqrt{y}\cos^2{\sqrt{y}}$$
sepate variables
$$\displaystyle \dfrac{dy}{\sqrt{y}\, \cos^2{\sqrt{y}} }=\dfrac{1}{7}\, dx
\implies \int{\dfrac{{d}y}{\sqrt{y}\,\cos^2{\left(\sqrt{y} \right) }} }
= \int{ \dfrac{1}{7}\,{d}x}$$
ok i think u subst is next ... maybe...
$$u=\sqrt{y} \therefore du=\dfrac{{d}y}{2\,\sqrt{y}}$$
sepate variables
$$\displaystyle \dfrac{dy}{\sqrt{y}\, \cos^2{\sqrt{y}} }=\dfrac{1}{7}\, dx
\implies \int{\dfrac{{d}y}{\sqrt{y}\,\cos^2{\left(\sqrt{y} \right) }} }
= \int{ \dfrac{1}{7}\,{d}x}$$
ok i think u subst is next ... maybe...
$$u=\sqrt{y} \therefore du=\dfrac{{d}y}{2\,\sqrt{y}}$$
Last edited by a moderator: