MHB Solving a system of linear equations with one unknown value

exqiron
Messages
2
Reaction score
0
Determine the values of a for which the following system of linear equations has no solutions, a unique solution, or infinitely many solutions. You can select 'always', 'never', 'a = ', or 'a ≠', then specify a value or comma-separated list of values.

3x1+6x2 = −6
3x1+9x2−6x3 = −12
x1+x2+ax3 = 1No Solutions: ?
Unique Solution: ?
Infinitely Many Solutions: ?

all i could conclude from this was
1 1 a 1
0 1 -2 -2
0 0 (2-a) -1
don't know what to do next i have tried different questions, don't understand :/
 
Physics news on Phys.org
exqiron said:
Determine the values of a for which the following system of linear equations has no solutions, a unique solution, or infinitely many solutions. You can select 'always', 'never', 'a = ', or 'a ≠', then specify a value or comma-separated list of values.

3x1+6x2 = −6
3x1+9x2−6x3 = −12
x1+x2+ax3 = 1No Solutions: ?
Unique Solution: ?
Infinitely Many Solutions: ?

all i could conclude from this was
1 1 a 1
0 1 -2 -2
0 0 (2-a) -1
don't know what to do next i have tried different questions, don't understand :/

To start with, you can find where you are going to have unique solutions by evaluating the determinant of your coefficient matrix. For all values of a that give a nonzero determinant, you will have unique solutions.
 
Prove It said:
To start with, you can find where you are going to have unique solutions by evaluating the determinant of your coefficient matrix. For all values of a that give a nonzero determinant, you will have unique solutions.

so in other words if i write this is this correct?
No solutions: when a = 2
Unique solution: when a not equal to 2
Infinite Many solutions: Never
 
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...

Similar threads

Replies
3
Views
1K
Replies
1
Views
1K
Replies
6
Views
2K
Replies
1
Views
1K
Replies
2
Views
3K
Replies
9
Views
2K
Replies
11
Views
2K
Replies
5
Views
2K
Replies
6
Views
2K
Back
Top