- #1
ehrenfest
- 2,020
- 1
[SOLVED] trig inequality
Use the graph of y = sin x to show the following. Given a triangle ABC,
[tex]\frac{\sin B + \sin C}{2}\leq \sin \frac{B+C}{2}[/tex].
Does anyone else think this question is weird? B < 180 - C so shouldn't their be a strict inequality? I am really not sure how to use the graphs. Should I replace B with 180 - C and try to derive some new inequalities? Can I use that inequality that argument of the sine to get an inequality with the sine itself?
Homework Statement
Use the graph of y = sin x to show the following. Given a triangle ABC,
[tex]\frac{\sin B + \sin C}{2}\leq \sin \frac{B+C}{2}[/tex].
Homework Equations
The Attempt at a Solution
Does anyone else think this question is weird? B < 180 - C so shouldn't their be a strict inequality? I am really not sure how to use the graphs. Should I replace B with 180 - C and try to derive some new inequalities? Can I use that inequality that argument of the sine to get an inequality with the sine itself?