- #1
gtfitzpatrick
- 379
- 0
Homework Statement
if 0<[tex]\lambda[/tex]<1 and
f(x) = x for 0<x<[tex]\lambda\pi[/tex] and
f(x) = ([tex]\lambda[/tex]/(1-[tex]\lambda[/tex]))([tex]\pi[/tex]-x) for [tex]\lambda\pi[/tex]<x<[tex]\pi[/tex]
show that f(x)= 2/([tex]\pi[/tex](1-[tex]\lambda[/tex]))[tex]\Sigma[/tex](sin( n[tex]\lambda[/tex][tex]\pi[/tex])sin(nx)(/n[tex]^{}2[/tex]
Homework Equations
The Attempt at a Solution
am i right in saying that there is only odd so ao = 0 and an = 0
and bn = 2/[tex]\pi[/tex] ([tex]\int^{\lambda\pi}_{0}[/tex] x + [tex]\int^{\pi}_{\lambda\pi}[/tex] of the second part) sin(nx)