- #1
brotherbobby
- 702
- 163
- Homework Statement
- Solve the following equation : ##\pmb{\tan^{-1}\frac{1-x}{1+x}=\frac{1}{2}\tan^{-1}x}##
- Relevant Equations
- 1. If ##\tan\theta=1\Rightarrow \theta =\tan^{-1} 1 = \tfrac{\pi}{4}##, ##\underline{\text{the principal value}}##.
2. ##\tan(A-B) = \frac{\tan A - \tan B}{1+\tan A \tan B}##
Problem Statement : Solve for ##x## :
Attempt : If I take ##x=\tan\theta##, the L.H.S. reads $$\tan^{-1}\frac{1-\tan\theta}{1+\tan\theta}= \tan^{-1}\left[\tan\left(\frac{\pi}{4}-\theta \right) \right ]=\frac{\pi}{4}-\theta.$$
On going back to ##x## from ##\theta##, the given equation now reads : $$\frac{\pi}{4}-\tan^{-1}x = \frac{1}{2}\tan^{-1}x\Rightarrow \tan^{-1}x=\frac{2}{3}\times \frac{\pi}{4}=\frac{\pi}{6}\Rightarrow \boxed{x=\frac{1}{\sqrt{3}}}.$$
Answer : I copy and paste the answer from the book :
Doubt : Where does the answer ##-\frac{1}{\sqrt{3}}## come from? If we take the principal value of ##\tan^{-1}1=\dfrac{\pi}{4}##, I don't see how there can be a second answer.
A hint or suggestion will be welcome.
Attempt : If I take ##x=\tan\theta##, the L.H.S. reads $$\tan^{-1}\frac{1-\tan\theta}{1+\tan\theta}= \tan^{-1}\left[\tan\left(\frac{\pi}{4}-\theta \right) \right ]=\frac{\pi}{4}-\theta.$$
On going back to ##x## from ##\theta##, the given equation now reads : $$\frac{\pi}{4}-\tan^{-1}x = \frac{1}{2}\tan^{-1}x\Rightarrow \tan^{-1}x=\frac{2}{3}\times \frac{\pi}{4}=\frac{\pi}{6}\Rightarrow \boxed{x=\frac{1}{\sqrt{3}}}.$$
Answer : I copy and paste the answer from the book :
Doubt : Where does the answer ##-\frac{1}{\sqrt{3}}## come from? If we take the principal value of ##\tan^{-1}1=\dfrac{\pi}{4}##, I don't see how there can be a second answer.
A hint or suggestion will be welcome.