- #1
Shawj02
- 20
- 0
Ok from other posts, everyone seems to say that it doesn't matter if you stick vectors into a matrix via columns or rows. So i want to prove this to myself using an example from my notes. The only problem is, I get different answers. Can someone correct me?
from my notes it says "show (0, 0,−5, 3), (4, 7,−1, 6), (0, 1, 2, 0) in R4 are linearly independent"
So, down columns (and rearranging)
-5,-1,2
0,4,0
0,7,1
3,6,0
which I can see is independent
-5,-1,2
0,4,0
0,0,1
0,0,0
but that looks a lot like it belongs to R3, in my opinion..
Anyways,
same thing rows instead,
4,7,-1,6
0,1,2,0
0,0,-5,3
Which looks like it's already in echelon form, to me.
And also looks like its dependent because x3 = (some constant) x4.
So something is wrong with what I'm doing, any help?
Thanks.
from my notes it says "show (0, 0,−5, 3), (4, 7,−1, 6), (0, 1, 2, 0) in R4 are linearly independent"
So, down columns (and rearranging)
-5,-1,2
0,4,0
0,7,1
3,6,0
which I can see is independent
-5,-1,2
0,4,0
0,0,1
0,0,0
but that looks a lot like it belongs to R3, in my opinion..
Anyways,
same thing rows instead,
4,7,-1,6
0,1,2,0
0,0,-5,3
Which looks like it's already in echelon form, to me.
And also looks like its dependent because x3 = (some constant) x4.
So something is wrong with what I'm doing, any help?
Thanks.