MHB Solving an Initial Value Problem Analytically

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Solve the initial value problem
$y'=\dfrac{1+3x^2}{3y^2-6y},
\quad y(0)=1$

Solving analytically
$3y^2-6y\ dy = 1+3x^2 \ dx$

so far hopefully...
 
Physics news on Phys.org
Well, I would write it as $(3y^2- 6y)dy= (1+ 3x^2)dx$, but, yes, the differential equation can be "separated" so that y is on one side and x on the other.

Now, integrate both sides. Have you done that?
 
$y^3 - 3 y^2 =x^3 + x + c$

ok i think we can plug in $x=0$ and $y=1$ so
$1-3=0+0+c$
$c=-2$

the book ans was
$y^3−3y^2−x−x^3+2=0,\quad |x|<1$
but i don't kmow how they got the interval
 
Last edited:
That requires some careful thought! The original problem was $y'= \frac{1+ 3x^2}{3y^2- 6y}$. The denominator is $3y^2- 6y= 3y(y- 2)$ so y cannot be 0 or 2. You have, correctly, that $y^3- 3y^2- x^3- x+ 2= 0$. If y= 0, that is $-x^3- x+ 2$ which is 0 when x= 1. If y= 2, that is $8- 12- x^4- x+ 2= -x^3- x- 2$ which is 0 when x= -1. Since y cannot be 0 or 2, x cannot be -1 or 1.
 
Last edited:
mahalo
very helpful

when I graphed it i noticed vertical slope at 1 but,,,
 
Notice that the specific condition, |x|< 1, depends also on the fact that the initial condition is at x=0 which is between -1 and 1.

If we had exactly the same differential equation with condition that y(2) be a given value, since 2> 1, we would have to restrict the solution to "x> 1".

If we had exactly the same differential equation with condition that y(-3) be a given value, since -3< -1, we would have to restrict the solution is "x< -1".
 
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...
Back
Top