- #1
- 2,186
- 1
[tex] \int \frac{1 - x \exp{xy}}{\frac{1}{y} + x \ln {y}} dx [/tex]
Here's what i have done
[tex] \int \frac{1 - x \exp{xy}}{\frac{1}{y} + x \ln {y}} dx = \int \frac{1}{\frac{1}{y} + x \ln {y}} dx + \int \frac{- x \exp{xy}}{\frac{1}{y} + x \ln {y}} dx [/tex]
so
[tex] I_{1} = I_{2} + I_{3} [/tex]
where
[tex] I_{1} = \int \frac{1 - x \exp{xy}}{\frac{1}{y} + x \ln {y}} dx [/tex]
[tex] I_{2} = \int \frac{1}{\frac{1}{y} + x \ln {y}} dx [/tex]
[tex] I_{3} = \int \frac{- x \exp{xy}}{\frac{1}{y} + x \ln {y}} dx [/tex]
Now,
[tex] I_{2} = \int \frac{1}{\frac{1}{y} + x \ln {y}} dx [/tex]
multiplying by [itex] \frac{\ln{y}}{\ln{y}} [/itex]
[tex] I_{2} = \frac{\ln{y}}{\ln{y}} \int \frac{1}{\frac{1}{y} + x \ln {y}} dx [/tex]
[tex] I_{2} = \frac{1}{\ln{y}} \int \frac{\ln{y}}{\frac{1}{y} + x \ln {y}} dx [/tex]
Using substitution [itex] u = \frac{1}{y} + x \ln {y} [/itex] and therefore [itex] du = \ln{y} dx [/itex]
Now,
[tex] I_{2} = \frac{1}{\ln{y}} \int \frac{1}{u} du [/tex]
[tex] I_{2} = \frac{1}{\ln{y}} \ln{|\frac{1}{y} + x \ln {y}|} [/tex]
Any ideas about [itex] I_{3} [/itex] or the whole integral?
Here's what i have done
[tex] \int \frac{1 - x \exp{xy}}{\frac{1}{y} + x \ln {y}} dx = \int \frac{1}{\frac{1}{y} + x \ln {y}} dx + \int \frac{- x \exp{xy}}{\frac{1}{y} + x \ln {y}} dx [/tex]
so
[tex] I_{1} = I_{2} + I_{3} [/tex]
where
[tex] I_{1} = \int \frac{1 - x \exp{xy}}{\frac{1}{y} + x \ln {y}} dx [/tex]
[tex] I_{2} = \int \frac{1}{\frac{1}{y} + x \ln {y}} dx [/tex]
[tex] I_{3} = \int \frac{- x \exp{xy}}{\frac{1}{y} + x \ln {y}} dx [/tex]
Now,
[tex] I_{2} = \int \frac{1}{\frac{1}{y} + x \ln {y}} dx [/tex]
multiplying by [itex] \frac{\ln{y}}{\ln{y}} [/itex]
[tex] I_{2} = \frac{\ln{y}}{\ln{y}} \int \frac{1}{\frac{1}{y} + x \ln {y}} dx [/tex]
[tex] I_{2} = \frac{1}{\ln{y}} \int \frac{\ln{y}}{\frac{1}{y} + x \ln {y}} dx [/tex]
Using substitution [itex] u = \frac{1}{y} + x \ln {y} [/itex] and therefore [itex] du = \ln{y} dx [/itex]
Now,
[tex] I_{2} = \frac{1}{\ln{y}} \int \frac{1}{u} du [/tex]
[tex] I_{2} = \frac{1}{\ln{y}} \ln{|\frac{1}{y} + x \ln {y}|} [/tex]
Any ideas about [itex] I_{3} [/itex] or the whole integral?